国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于深度卷積神經(jīng)網(wǎng)絡(luò )的心音分類(lèi)算法
DOI:
CSTR:
作者:
作者單位:

太原理工大學(xué) 軟件學(xué)院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

TP391.4

基金項目:

國家自然科學(xué)基金(61872262),山西省基礎研究計劃項目(201801D121143)


Heart sound classification algorithm based on deep convolutional neural network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對現有心音分類(lèi)算法普適性差、依賴(lài)于對基本心音的精確分割、分類(lèi)模型結構單一等問(wèn)題,提出采用大量未經(jīng)過(guò)精確分割的心音二維特征圖訓練深度卷積神經(jīng)網(wǎng)絡(luò )(Convolutional neural networks, CNN)的方法。首先采用滑動(dòng)窗口方法和梅爾頻率系數對心音信號進(jìn)行預處理,得到大量未經(jīng)過(guò)精確分割的心音特征圖;然后利用深度CNN模型對心音特征圖進(jìn)行訓練和測試。根據卷積層間連接方式的不同,設計了三種深度CNN模型:基于單一連接的卷積神經(jīng)網(wǎng)絡(luò )、基于跳躍連接的卷積神經(jīng)網(wǎng)絡(luò )、基于密集連接的卷積神經(jīng)網(wǎng)絡(luò )。實(shí)驗結果表明基于密集連接的卷積神經(jīng)網(wǎng)絡(luò )比其他兩種網(wǎng)絡(luò )具備更大的潛力。與其他心音分類(lèi)算法相比,該算法不依賴(lài)于對基本心音的精確分割且在分類(lèi)準確率、敏感性和特異性方面均有提升。

    Abstract:

    Existing heart sound classification algorithms based on convolutional neural networks have the disadvantages of relying on precise segmentation of basic heart sounds, single classification model structure, and poor universality. So a method of training deep convolutional neural networks using a large number of two-dimensional heart sound feature maps that have not been accurately segmented is proposed. Firstly, the heart sound signal is preprocessed by the sliding window method and the Mel frequency coefficient to obtain a large number of heart sound feature maps that have not been accurately segmented. Then the deep CNN model is used to train and test the heart sound feature maps. According to the different connection modes between convolutional layers, three deep CNN models are designed: convolutional neural network based on single connection, convolutional neural network based on skip connection, and convolutional neural network based on dense connection. The experimental results show that the convolutional neural network based on dense connections has greater potential than based on single or skip connection. Compared with other heart sound classification algorithms, the algorithm we proposed does not rely on precise segmentation of basic heart sounds and has improved the accuracy, sensitivity and specificity of classification.

    參考文獻
    相似文獻
    引證文獻
引用本文

孟麗楠,謝紅薇,寧晨,付陽(yáng).基于深度卷積神經(jīng)網(wǎng)絡(luò )的心音分類(lèi)算法計算機測量與控制[J].,2021,29(8):211-217.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2021-01-18
  • 最后修改日期:2021-02-05
  • 錄用日期:2021-02-07
  • 在線(xiàn)發(fā)布日期: 2021-08-19
  • 出版日期:
文章二維碼
宁阳县| 江油市| 清远市| 荔浦县| 德江县| 遂宁市| 正定县| 枣阳市| 江油市| 淅川县| 临漳县| 印江| 汉沽区| 克什克腾旗| 集贤县| 宝应县| 历史| 平乐县| 阜城县| 中山市| 股票| 宁德市| 濮阳市| 思南县| 泸州市| 晴隆县| 晋宁县| 尼玛县| 合肥市| 格尔木市| 贵州省| 石首市| 太仓市| 青河县| 邵阳县| 黔西县| 兴业县| 新余市| 丘北县| 东台市| 东莞市|