国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于SE-ResNeXt的滾動(dòng)軸承故障診斷方法
DOI:
CSTR:
作者:
作者單位:

重慶郵電大學(xué) 自動(dòng)化學(xué)院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:


Fault Diagnosis Method of Rolling Bearing Based on SE-ResNeXt
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對滾動(dòng)軸承在故障診斷過(guò)程中信號特征提取困難導致診斷準確率低、魯棒性差的問(wèn)題,提出一種基于Squeeze-Excitation-ResNeXt(SE-ResNeXt)網(wǎng)絡(luò )的滾動(dòng)軸承故障診斷方法。將采集的一維軸承振動(dòng)信號作為輸入,進(jìn)行滑動(dòng)窗口采樣與標準化處理,通過(guò)壓縮、激勵操作進(jìn)行特征重標定,擴大模型感受野,并級聯(lián)聚集殘差變換網(wǎng)絡(luò )自適應提取故障信號特征。在模型訓練過(guò)程中選擇最優(yōu)壓縮率為1/8以及8個(gè)組卷積,引入Relu函數加快網(wǎng)絡(luò )收斂,使用全局平均池化替代全連接層避免過(guò)擬合現象,構造能夠自主進(jìn)行表征學(xué)習的最優(yōu)故障診斷模型。通過(guò)仿真實(shí)驗表明:與目前的深度學(xué)習算法相比,SE-ResNeXt網(wǎng)絡(luò )能夠準確的實(shí)現軸承故障診斷,并在高噪聲的環(huán)境下仍具有較好的魯棒性。

    Abstract:

    For the problem of low diagnostic accuracy and robustness due to the difficulty in extracting the signal features of rolling bearings during fault diagnosis, a new rolling bearing fault diagnosis method is proposed based on Squeeze-Excitation-ResNeXt(SE-ResNeXt). The collected one-dimensional bearing vibration signals were taken as input, the sliding window sampling and standardization were conducted, the feature re-calibration was carried out through compression and excitation operation, the model receptive field was enlarged and the fault signal characteristics were extracted adaptively by cascading aggregate residual transformation network. In the process of model training, the optimal compression rate was selected as 1/8 and 8 sets of convolution, Relu function was introduced to accelerate the convergence of the network, global average pooling was used to replace the full connection layer to avoid overfitting, and an optimal fault diagnosis model capable of independent characterization learning was constructed. Simulation experiments show that compared with the current deep learning algorithm, the SE-ResNeXt network can accurately realize bearing fault diagnosis and still has good robustness under high noise environment.

    參考文獻
    相似文獻
    引證文獻
引用本文

胡向東,梁川.基于SE-ResNeXt的滾動(dòng)軸承故障診斷方法計算機測量與控制[J].,2021,29(7):46-51.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2020-12-22
  • 最后修改日期:2021-01-04
  • 錄用日期:2021-01-05
  • 在線(xiàn)發(fā)布日期: 2021-07-23
  • 出版日期:
文章二維碼
广饶县| 紫阳县| 柏乡县| 洞口县| 神池县| 河池市| 沈阳市| 新乡市| 长宁县| 高唐县| 正镶白旗| 江达县| 竹溪县| 陵川县| 万安县| 横山县| 满城县| 东阳市| 双桥区| 南部县| 宜章县| 嘉祥县| 滦南县| 磐安县| 灯塔市| 宜兰市| 四平市| 陕西省| 微山县| 修文县| 吉林省| 乌兰浩特市| 婺源县| 新泰市| 宝清县| 镇江市| 搜索| 临清市| 祁连县| 垣曲县| 蕲春县|