国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于卷積神經(jīng)網(wǎng)絡(luò )與遷移學(xué)習的碳鋼石墨化自動(dòng)評級研究
DOI:
CSTR:
作者:
作者單位:

廣東省特種設備檢測研究院珠海檢測院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

TF761;TP183

基金項目:


Automatic Evaluation Study of Carbon Steel Graphitization Based on Convolutional Neural Network and Transfer Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為實(shí)現碳鋼石墨化的智能化評級,基于卷積神經(jīng)網(wǎng)絡(luò )與遷移學(xué)習的方法構建了碳鋼金相圖像的自動(dòng)分類(lèi)模型。首先通過(guò)幾何變換和像素調整的數據增強方法建立了碳鋼石墨化圖像數據集。然后采用統一擴展網(wǎng)絡(luò )寬度、深度和分辨率方式來(lái)協(xié)調精度與效率的輕量級EfficientNet網(wǎng)絡(luò )作為主干特征提取網(wǎng)絡(luò ),構建碳鋼石墨化圖像評級模型,并在訓練階段利用遷移學(xué)習與參數微調的方法來(lái)提高模型的訓練效率。最后使用測試數據集對模型的分類(lèi)精度與復雜度進(jìn)行了驗證實(shí)驗,結果表明該模型能快速準確的對碳鋼石墨化程度進(jìn)行自動(dòng)評級,在僅需12MB內存的情況下,便可實(shí)現97.01%的評級準確率,單幅金相圖像的平均檢測時(shí)間也僅需10.27ms,滿(mǎn)足現場(chǎng)檢測的精度與實(shí)時(shí)性要求。

    Abstract:

    In order to realize the intelligent evaluation of carbon steel graphitization, an automatic classification model of carbon steel metallographic images is constructed based on convolutional neural network and transfer learning. The carbon steel graphitization image dataset was firstly established by the data enhancement methods of geometric transformation and pixel adjustment. Then the lightweight EfficientNet network that uniformly expands the network width, depth and resolution to coordinate accuracy and efficiency was used as the backbone feature extraction network to construct a carbon steel graphitization image evaluation model, and transfer learning and parameter fine-tuning methods were used in the training phase to improve the training efficiency of the model. Finally, a test data set was used to verify the classification accuracy and complexity of the model. The results show that the model can quickly and accurately grade the degree of graphitization of carbon steel automatically. With only 12 MB of memory, it can achieve a 97.01% accuracy, and an average detection time of only 10.27 ms for a single metallographic image, which meets the accuracy and real-time requirements of on-site detection.

    參考文獻
    相似文獻
    引證文獻
引用本文

謝小娟,楊寧祥.基于卷積神經(jīng)網(wǎng)絡(luò )與遷移學(xué)習的碳鋼石墨化自動(dòng)評級研究計算機測量與控制[J].,2021,29(2):234-237.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2020-10-29
  • 最后修改日期:2020-11-21
  • 錄用日期:2020-11-23
  • 在線(xiàn)發(fā)布日期: 2021-02-08
  • 出版日期:
文章二維碼
交城县| 平湖市| 昌乐县| 汕尾市| 蓝田县| 重庆市| 叶城县| 清涧县| 津市市| 牡丹江市| 来凤县| 贺兰县| 开原市| 云和县| 北流市| 铜梁县| 田东县| 云林县| 明溪县| 大厂| 合作市| 万荣县| 达州市| 方正县| 织金县| 台北市| 灵石县| 洛隆县| 特克斯县| 莱西市| 双城市| 岑溪市| 新巴尔虎右旗| 金门县| 永春县| 尼勒克县| 平陆县| 涞源县| 图木舒克市| 修文县| 安塞县|