国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于優(yōu)化BP神經(jīng)網(wǎng)絡(luò )光伏出力短期預測研究
DOI:
CSTR:
作者:
作者單位:

云南省昆明市云南民族大學(xué)

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

國家自然科學(xué)基金項目(61761049,61461055),云南省教育廳科學(xué)研究基金項目(2019Y0169),云南省教育廳科學(xué)研究基金項目(2020Y0240)


Prediction of photovoltaic output based on improved neural network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    太陽(yáng)能擁有豐富的資源,而且分布廣泛,現已被廣泛應用到各種應用中,光伏發(fā)電已是一種可靠可行,可擴展的重要可再生能源利用的方式,因此對光伏出力進(jìn)行精準的預測意義重大。從寧夏市某光伏發(fā)電站獲得了一年的光伏發(fā)電數據與氣象等因素,選取四月至五月的數據進(jìn)行研究預測。針對BP神經(jīng)網(wǎng)絡(luò )的收斂時(shí)間長(cháng),容易陷入局部極小值等缺點(diǎn)。建立單一BP神經(jīng)網(wǎng)絡(luò )預測模型,基于遺傳算法(GA)優(yōu)化BP神經(jīng)網(wǎng)絡(luò )的GA-BP預測模型與基于狼群算法(WPA)優(yōu)化的BP神經(jīng)網(wǎng)絡(luò )的WPA-BP預測模型。選擇平均相對誤差作為誤差評估指標,結果表明,三種預測模型均能對光伏電站的發(fā)電功率進(jìn)行預測,但是單一的BP神經(jīng)網(wǎng)絡(luò )模型誤差較大,晴天時(shí),誤差為5.1%,經(jīng)遺傳算法改進(jìn)后的預測誤差為4.9%,較單一模型提高了0.2%精度,而WPA-BP預測模型誤差為4.4%,預測精度高于前者。同時(shí)多云天和雨天的時(shí),均為WPA-BP模型的預測誤差小,穩定性高,具有一定的研究?jì)r(jià)值。

    Abstract:

    Solar energy is rich in resources and widely distributed, and has been widely used in various applications. Photovoltaic power generation has become a reliable, feasible and extensible and important way to use renewable energy. Therefore, accurate prediction of photovoltaic output is of great significance. A year's photovoltaic power generation data and meteorological factors were obtained from a photovoltaic power station in Ningxia, and the data from April to May were selected for research and prediction. The convergence time of BP neural network is long and it is easy to fall into local minimum. A single BP neural network prediction model was established, gA-BP prediction model based on genetic algorithm (GA) optimization of BP neural network and WPA-BP prediction model based on Wolf pack algorithm (WPA) optimization of BP neural network were established. Average relative error is chosen as the error evaluation index, the result shows that the three kinds of prediction model can forecast photovoltaic power station of power, but a single BP neural network model of the error is bigger, sunny days, the error is 5.1%, the genetic algorithm improved the prediction error is 4.9%, increased by 0.2% than that of single model accuracy, and WPA - BP prediction model error is 4.4%, the prediction accuracy is higher than the former. At the same time, when it is cloudy and rainy, the PREDICTION error of WPA-BP model is small and its stability is high, so it has certain research value.

    參考文獻
    相似文獻
    引證文獻
引用本文

齊琦,陳芳芳,趙輝,趙玉.基于優(yōu)化BP神經(jīng)網(wǎng)絡(luò )光伏出力短期預測研究計算機測量與控制[J].,2021,29(4):70-75.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2020-09-22
  • 最后修改日期:2020-10-15
  • 錄用日期:2020-10-15
  • 在線(xiàn)發(fā)布日期: 2021-04-25
  • 出版日期:
文章二維碼
永德县| 清水河县| 石泉县| 绥芬河市| 土默特左旗| 长兴县| 正阳县| 盐津县| 文昌市| 福海县| 娄烦县| 阳东县| 开阳县| 开远市| 晋江市| 沙雅县| 新疆| 平凉市| 登封市| 金阳县| 五家渠市| 吉木乃县| 金山区| 纳雍县| 远安县| 昭苏县| 视频| 荃湾区| 常宁市| 砚山县| 外汇| 基隆市| 抚顺县| 德江县| 棋牌| 平乡县| 顺平县| 五原县| 柞水县| 海林市| 佛山市|