国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

改進(jìn)LSTM神經(jīng)網(wǎng)絡(luò )在電機故障診斷中的應用
DOI:
CSTR:
作者:
作者單位:

華南理工大學(xué)電力學(xué)院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:


Application of improved LSTM neural network in motor fault diagnosis
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    三相異步電機因其結構簡(jiǎn)單、維護方便、可靠性高等特點(diǎn)被廣泛應用到工業(yè)生產(chǎn)中,所以保證三相異步電機在生產(chǎn)環(huán)境中的安全與穩定運行具有十分重要的意義。傳統的三相異步電機故障診斷均采用特征電流法,但在實(shí)際應用中由于特征諧波難以分離,從而導致無(wú)法判斷;采用先進(jìn)的長(cháng)短期記憶(LSTM, Long Short-term Memory)神經(jīng)網(wǎng)絡(luò )以及最新提出的RAdam優(yōu)化器,在電機正常運轉時(shí)對其運行特性進(jìn)行實(shí)時(shí)采集,通過(guò)雙峰譜線(xiàn)插值法以及滑窗法提取諧波之后,對電機輸出結果進(jìn)行時(shí)序預測和比對;最后以工程中實(shí)際電機數據為例,通過(guò)測量其故障運行實(shí)際數據,驗證了該算法的可行性;經(jīng)實(shí)驗測試可得,相比于傳統神經(jīng)網(wǎng)絡(luò ),該算法具有更好的故障檢測能力。

    Abstract:

    Conventional asynchronous motors are widely used in industrial production due to their simple structure, convenient maintenance, and high reliability. Therefore, it is of great significance to ensure the safe and stable operation of the frequency converter in the production environment. Motor fault diagnosis uses the characteristic current method, but in practical applications, the characteristic harmonics are separated, which makes it impossible to judge; the advanced long short-term memory (LSTM, long short-term memory) neural network and the newly proposed RAdam optimizer are used. When the motor is running normally, its operating characteristics are collected in real time. After the harmonics are extracted by the double-peak spectral interpolation method and the sliding window method, the output results of the motor are time series predicted and compared; finally, the actual motor data in the project is taken as an example. The feasibility of the algorithm is verified by measuring the actual data of its fault operation; it can be obtained through experimental tests, and it is used in traditional neural networks, and the algorithm has better fault detection capabilities;

    參考文獻
    相似文獻
    引證文獻
引用本文

張凱,林谷燁,羅權.改進(jìn)LSTM神經(jīng)網(wǎng)絡(luò )在電機故障診斷中的應用計算機測量與控制[J].,2021,29(4):45-50.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2020-09-10
  • 最后修改日期:2020-10-15
  • 錄用日期:2020-10-15
  • 在線(xiàn)發(fā)布日期: 2021-04-25
  • 出版日期:
文章二維碼
浙江省| 无棣县| 乳源| 手游| 安义县| 蒙自县| 郓城县| 盈江县| 香河县| 泰和县| 临朐县| 大丰市| 天等县| 呼玛县| 六枝特区| 漳州市| 龙川县| 建阳市| 辉县市| 廉江市| 碌曲县| 油尖旺区| 攀枝花市| 屏东县| 灵台县| 马边| 成都市| 怀来县| 民权县| 朝阳区| 高平市| 上栗县| 海林市| 平乐县| 富平县| 保康县| 丰县| 黄冈市| 六枝特区| 岗巴县| 玉林市|