国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于卷積神經(jīng)網(wǎng)絡(luò )的行人目標檢測系統設計
DOI:
CSTR:
作者:
作者單位:

西安理工大學(xué) 自動(dòng)化與信息工程學(xué)院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

陜西省科技計劃重點(diǎn)項目資助(2017ZDCXL-GY-05-03)


Design of pedestrian target detection system based on convolutional neural network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為獲得最直觀(guān)的行人目標檢測結果,避免運動(dòng)姿態(tài)不確定性對實(shí)時(shí)檢測造成的影響,設計基于卷積神經(jīng)網(wǎng)絡(luò )的行人目標檢測系統。以CNN計算框架作為硬件結構主體,分級連接目標傳感器與神經(jīng)型卷積分類(lèi)器,按照并行檢測原理及卷積神經(jīng)架構搭建檢測體系結構。建立訓練文件體系,通過(guò)迎合目標訓練環(huán)境的方式,配置必要的檢測文件參數,完成待檢測行人目標的樣本訓練處理。在檢測節點(diǎn)架構中,規定與訪(fǎng)問(wèn)接口關(guān)聯(lián)的配置條件,借助增設的模塊復用加速結構,直接獲取行人目標檢測結果,實(shí)現行人目標的樣本重構,完成基于卷積神經(jīng)網(wǎng)絡(luò )的行人目標檢測系統設計。實(shí)驗結果表明,與PCA、SVM算法相比,應用卷積神經(jīng)網(wǎng)絡(luò )型檢測系統后,單位時(shí)間內的行人目標檢測量達到9.6×109T,目標數據堆積速率降低至1.14×109T/s,能夠直觀(guān)獲取行人目標檢測結果,有效抑制了運動(dòng)姿態(tài)不確定性對系統實(shí)時(shí)檢測的影響。

    Abstract:

    In order to obtain the most intuitive pedestrian target detection results and avoid the impact of motion pose uncertainty on real-time detection, a pedestrian target detection system based on convolutional neural network is designed. The CNN computing framework is used as the main body of the hardware structure, the target sensor and the neural type convolutional classifier are connected in a hierarchical manner, and the detection architecture is built according to the parallel detection principle and the convolutional neural architecture. Establish a training file system, configure the necessary detection file parameters by catering to the target training environment, and complete the sample training process of the pedestrian target to be detected. In the detection node architecture, the configuration conditions associated with the access interface are specified, and the additional module multiplexing acceleration structure is used to directly obtain the pedestrian target detection results, and the pedestrian target sample reconstruction is realized, and the pedestrian target detection system based on the convolutional neural network is completed design. Experimental results show that, compared with PCA and SVM algorithms, after applying the convolutional neural network detection system, the pedestrian target detection amount per unit time reaches 9.6×109T, and the target data accumulation rate is reduced to 1.14×109T/s, which can be obtained intuitively Pedestrian target detection results effectively suppress the impact of motion pose uncertainty on real-time detection of the system.

    參考文獻
    相似文獻
    引證文獻
引用本文

王林,劉盼.基于卷積神經(jīng)網(wǎng)絡(luò )的行人目標檢測系統設計計算機測量與控制[J].,2020,28(7):64-68.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2020-05-12
  • 最后修改日期:2020-05-12
  • 錄用日期:2020-05-25
  • 在線(xiàn)發(fā)布日期: 2020-07-14
  • 出版日期:
文章二維碼
上杭县| 洛阳市| 望都县| 彩票| 临泉县| 清水县| 鄄城县| 肥城市| 兰考县| 青阳县| 徐汇区| 临澧县| 团风县| 灵山县| 双流县| 安阳县| 临泉县| 衡南县| 庄河市| 海南省| 轮台县| 乌拉特后旗| 玉田县| 白山市| 丰都县| 东丽区| 邯郸县| 绥阳县| 驻马店市| 那曲县| 吉安县| 大荔县| 瓦房店市| 萨迦县| 渭南市| 余姚市| 阳江市| 建德市| 金塔县| 赞皇县| 嘉禾县|