国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于文本挖掘的高速鐵路動(dòng)車(chē)組故障多級分類(lèi)研究
DOI:
CSTR:
作者:
作者單位:

中國鐵道科學(xué)研究院 研究生部

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

國家自然科學(xué)基金(51967010), 中國鐵道科學(xué)研究院院基金重大課題(2017YJ005)


Research on Multi-level Classification of High-speed Railway Signal Equipment Fault based on Text Mining
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對高速鐵路信號設備故障發(fā)生后記錄的文本數據,提出基于文本挖掘方式的高速鐵路信號設備故障多級分類(lèi)模型研究。提出TF-IDF詞匯權重與詞匯字典結合的特征表示方法實(shí)現信號設備故障文本數據的特征提取。多級分類(lèi)模型中,基于Stacking集成學(xué)習思想設計單層分類(lèi)模型,將循環(huán)神經(jīng)網(wǎng)絡(luò )BiGRU和BiLSTM作為初級學(xué)習器,設計權重組合計算方法作為次級學(xué)習器,將多級分類(lèi)任務(wù)分解為各層單分類(lèi)任務(wù),并采用K折交叉驗證訓練Stacking模型。采用高速鐵路自開(kāi)通至十年的信號轉轍機故障數據,通過(guò)對故障原因文本數據的分析,實(shí)現故障部位和故障原因的二級分類(lèi),經(jīng)過(guò)K=5次訓練,BiGRU較BiLSTM各評價(jià)指標都較高,經(jīng)實(shí)驗BiGRU分配權重為0.7,BiLSTM權重為0.3,組合加權對兩個(gè)網(wǎng)絡(luò )的輸出計算,準確率提高為0.8814,召回率提高為0.8642。實(shí)驗表明多級分類(lèi)模型能夠有效提升信號設備故障多級分類(lèi)任務(wù)的分類(lèi)評價(jià)指標,并能夠保證分類(lèi)結果隸屬關(guān)系的正確性。

    Abstract:

    Aiming at the text data recorded after the failure of high-speed railway signal equipment, a multi-level classification model of high-speed railway signal equipment failure based on text mining is proposed. A feature representation method combining Term Frequency-Inverse Document Frequency (TF-IDF) word weight and word dictionary is proposed to extract the feature of signal equipment fault text data. In the multi-level classification model, the single-layer classification model was designed based on Stacking Integrated learning idea, the recurrent neural network Bidirection Gated Recurrent Unit (BiGRU) and Bidirection Long Short Term Memory (BiLSTM) were used as primary learners, and the weight combination calculation method was designed as secondary learners, multi-level classification tasks were decomposed into single classification tasks of each layer, and K-fold cross-verification was used to train Stacking model. After k = 5 training, the evaluation indexes of bigru are higher than those of bilstm. The weight of bigru and bilstm was 0.7 and 0.3 respectively. The output of the two networks is calculated by combination weighting, the accuracy is improved to 0.8814, and the recall rate is increased to 0.8642. High-speed railway from the opening to a decade of signal switch machine failure data, the secondary classification of fault location and fault cause is realized by analyzing the text data of fault cause, experiment show that multi-level classification model can effectively improve the classification of signal equipment failure multi-level classification task evaluation index, and can ensure the correctness of the subordinate relations classification results.

    參考文獻
    相似文獻
    引證文獻
引用本文

高凡,李樊,張銘,王志飛,趙俊華.基于文本挖掘的高速鐵路動(dòng)車(chē)組故障多級分類(lèi)研究計算機測量與控制[J].,2020,28(7):59-63.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2020-05-06
  • 最后修改日期:2020-06-18
  • 錄用日期:2020-05-11
  • 在線(xiàn)發(fā)布日期: 2020-07-14
  • 出版日期:
文章二維碼
探索| 连城县| 保亭| 万年县| 新和县| 永城市| 建始县| 忻城县| 颍上县| 肇东市| 绥江县| 寿光市| 长岛县| 崇州市| 乌鲁木齐县| 潢川县| 灵宝市| 宁强县| 贺州市| 织金县| 精河县| 普安县| 永济市| 巫山县| 海门市| 惠水县| 两当县| 民丰县| 仁布县| 迁安市| 辽阳县| 旺苍县| 安多县| 驻马店市| 象州县| 舞钢市| 竹溪县| 邯郸县| 磐石市| 峨边| 抚顺市|