国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

一種隧道基坑多維度時(shí)變預測EPS模型的應用
DOI:
CSTR:
作者:
作者單位:

S廣西有色勘察設計研究院S廣西南寧530031

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

TU433

基金項目:

國家自然科學(xué)51134001


Application of a multidimensional time-varying predictive EPS model for tunnel pit
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    如何能準確地掌握到正在施工的隧道深基坑所發(fā)生形變的態(tài)勢,就可以進(jìn)一步實(shí)現動(dòng)態(tài)預測并采取有效的扼制舉措,才能有效保障施工安全。據此提出一種基于信號分析法,通過(guò)耦合經(jīng)驗模態(tài)分解法(Empirical Mode Decomposition)、鳥(niǎo)群覓食算法(PSO)與單隱層前饋神經(jīng)網(wǎng)絡(luò )SLFNs學(xué)習算法,結合成專(zhuān)為非線(xiàn)性情況下的基坑施工作多維時(shí)變預報模型EMD-PSO-SLFNs(簡(jiǎn)稱(chēng)EPS)。其先將隧道形變的深坑序列分解時(shí)的EMD進(jìn)行多尺度原生模態(tài)函數(IMF);并引入IMF、PSO-SLFNS變量序列進(jìn)行預測,對其進(jìn)行疊加預測,用模型的進(jìn)行最終結果的運算預測,再用耦合PSO與SLFNs量化算法的作末端處理、變量序列進(jìn)行預測。下文以南寧某隧道基坑施工為例,經(jīng)過(guò)深層次透析得出,單憑EMD分解模型預測的相對誤差為值在0.22%至0.42%之間,值δ=0.32%實(shí)際均差值;而進(jìn)行EMD-PSO-SLFNs組合型作多維度時(shí)變分解模型預測的相對誤差為0.31%至0.75%之間,值δ=0.64%,該預測精度明顯高于前者,而且能在非平穩線(xiàn)性、變序情況下預測,為隧道基坑形變預測提供了一種實(shí)用新型的方法。

    Abstract:

    How to accurately grasp the deformation of the deep pit in the tunnel under construction, can further achieve dynamic prediction and take effective containment measures to effectively guarantee construction safety. Accordingly, a signal-based analysis method is proposed to combine the coupled empirical mode decomposition (EMD-PSO-SLFNs), bird feeding algorithm (PSO) and single cryptic feedforward neural network SLFNs learning algorithm into a multidimensional time-varying prediction model EMD-PSO-SLFNs (referred to as EPS) for pit construction under non-linear conditions. It first decomposes the EMD of the tunnel deformation in the deep pit sequence for multi-scale native modal function (IMF); and introduces IMF and PSO-SLFNS variable sequences for prediction, superimposes prediction on them, and predicts the final results using the model, and then uses the end-processing and variable sequences of the coupled PSO and SLFNs quantization algorithm for prediction. The following is an example of a tunnel pit construction in Nanning, after in-depth analysis, the relative error predicted by the EMD decomposition model alone is between 0.22% and 0.42%, with δ=0.32% actual mean difference; while the relative error predicted by the EMD-PSO-SLFNs combination for multi-dimensional time-varying decomposition model is between 0.31% and 0.75%, with δ=0.64%, the prediction accuracy is significantly higher than the former, and can be predicted under non-stable linear, variable order, providing a practical and novel method for tunnel pit deformation prediction.

    參考文獻
    相似文獻
    引證文獻
引用本文

翁敦賢.一種隧道基坑多維度時(shí)變預測EPS模型的應用計算機測量與控制[J].,2020,28(6):56-60.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2020-04-09
  • 最后修改日期:2020-04-16
  • 錄用日期:2020-04-16
  • 在線(xiàn)發(fā)布日期: 2020-06-17
  • 出版日期:
文章二維碼
大埔区| 贵南县| 花垣县| 拉萨市| 霍林郭勒市| 泰州市| 安阳县| 措美县| 缙云县| 霍邱县| 乡城县| 泽州县| 宿州市| 汉川市| 谢通门县| 渝北区| 湟中县| 新宾| 太康县| 霍城县| 建德市| 四会市| 九寨沟县| 普安县| 雷山县| 巴青县| 合水县| 定安县| 叙永县| 明星| 云霄县| 河东区| 渭源县| 如东县| 黄浦区| 义马市| 谷城县| 固原市| 纳雍县| 图片| 静安区|