国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于卷積自編碼神經(jīng)網(wǎng)絡(luò )的鋰離子電池健康狀況評估方法研究
DOI:
CSTR:
作者:
作者單位:

青島大學(xué) 電氣工程學(xué)院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

V233.7

基金項目:


HealthAssessmentMethodofLithiumIonBatteryBasedonConvolutionalSelf-EncodingNeuralnetwork
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    目前鋰離子電池已被廣泛用作能量存儲系統,在手機、電動(dòng)汽車(chē)和飛機中均有廣泛的應用。然而鋰離子電池在使用過(guò)程中存在一定的危險性,若不能及時(shí)對電池健康狀態(tài)評估(SOH)發(fā)現危險將會(huì )導致十分嚴重的后果。因此,研究一種基于卷積神經(jīng)網(wǎng)絡(luò )的鋰離子電池健康狀況評估方法,該方法通過(guò)使用卷積自編碼神經(jīng)網(wǎng)絡(luò )對電池狀態(tài)數據進(jìn)行特征提取,有效提升了評估的準確率,并且神經(jīng)網(wǎng)絡(luò )能夠在使用過(guò)程中不斷進(jìn)行學(xué)習,具有較高的靈活性,最后通過(guò)使用NASA公開(kāi)的鋰電池數據集測試,評估準確率達到93.6%,相比傳統方法有較大提升。

    Abstract:

    At present, lithium-ion batteries have been widely used as energy storage systems, and they are widely used in mobile phones, electric vehicles and aircraft. However, there are certain dangers in the use of lithium ion batteries. If the battery health status (SOH) is not found in time, the danger will lead to very serious consequences. Therefore, a method for assessing the health of lithium-ion batteries based on a convolutional neural network is studied. This method uses a convolutional self-encoding neural network to extract the characteristics of the battery state data, effectively improving the accuracy of the evaluation, and the neural network can Continuous learning during the use process has high flexibility. Finally, by using the lithium battery data set published by NASA, the evaluation accuracy rate is 93.6%, which is greatly improved compared with the traditional method.

    參考文獻
    相似文獻
    引證文獻
引用本文

侯瑞磊,范秋華.基于卷積自編碼神經(jīng)網(wǎng)絡(luò )的鋰離子電池健康狀況評估方法研究計算機測量與控制[J].,2020,28(8):265-269.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2019-12-26
  • 最后修改日期:2020-01-16
  • 錄用日期:2020-01-17
  • 在線(xiàn)發(fā)布日期: 2020-08-13
  • 出版日期:
文章二維碼
阳新县| 玉田县| 合山市| 永泰县| 玉门市| 青川县| 土默特左旗| 嘉义县| 应用必备| 祁东县| 洛隆县| 阳高县| 绍兴市| 北京市| 宜都市| 弥渡县| 通化县| 泸定县| 双鸭山市| 同心县| 清徐县| 德惠市| 卢氏县| 和平县| 威海市| 彭泽县| 蛟河市| 乌恰县| 黄陵县| 灌阳县| 南通市| 昭通市| 大安市| 乌兰察布市| 承德市| 高邮市| 孟州市| 晋江市| 黄骅市| 盐池县| 天津市|