国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于卷積神經(jīng)網(wǎng)絡(luò )的通信信號調制識別研究
DOI:
CSTR:
作者:
作者單位:

西安郵電大學(xué)通信與信息工程學(xué)院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:


Research on communication signal modulation recognition based on convolution neural network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對傳統人工提取專(zhuān)家特征來(lái)進(jìn)行通信信號識別的方法存在局限性大、低信噪比下準確率低的問(wèn)題,提出一種復基帶信號與卷積神經(jīng)網(wǎng)絡(luò )自動(dòng)調制識別相結合的新方法。該方法將接收到的信號進(jìn)行預處理,得到包含同相分量和正交分量的復基帶信號,該信號作為輸入卷積神經(jīng)網(wǎng)絡(luò )模型的數據集,通過(guò)多次訓練調整模型結構以及卷積核、步長(cháng)、特征圖和激活函數等超參數,利用訓練好的模型對通信信號進(jìn)行特征提取和識別。實(shí)現了對2FSK、4FSK、BPSK、8PSK、QPSK、QAM16和QAM64 七種數字通信信號類(lèi)型的識別分類(lèi)。實(shí)驗結果表明,當信噪比為0dB時(shí),七種信號的平均識別準確率已達94.61%,驗證了算法是有效的且在低信噪比條件下有較高的準確率。

    Abstract:

    In the task of communication signal recognition, to improve the limitation and low accuracy under the condition of low signal-to-noise ratio (SNR) which used the traditional manual extraction of expert feature, a new method of automatic modulation recognition based on complex baseband signals and convolutional neural network is proposed. In this method, the received signals are preprocessed to obtain the complex baseband signal containing In-Phase components and Quadrature components. The complex baseband signal is input to convolutional neural network model as data set, which trains the convolutional neural network model for many times and adjusts the model structure, filter size, stride, feature map, activation function and other super parameters. The trained convolutional neural network model is used to extract the features and classify signals. The classification and recognition of seven kinds of digital communication signals including 2FSK, 4FSK, BPSK, 8PSK, QPSK, QAM16 and QAM64 are realized. The experimental results show that when the SNR is 0db, the average recognition accuracy of seven types of signals can reach 94.61%, which proves that the algorithm is effective and has high accuracy under the condition of low SNR.

    參考文獻
    相似文獻
    引證文獻
引用本文

楊潔,夏卉.基于卷積神經(jīng)網(wǎng)絡(luò )的通信信號調制識別研究計算機測量與控制[J].,2020,28(7):220-224.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2019-12-13
  • 最后修改日期:2020-01-09
  • 錄用日期:2020-01-10
  • 在線(xiàn)發(fā)布日期: 2020-07-14
  • 出版日期:
文章二維碼
邯郸市| 阿鲁科尔沁旗| 江达县| 正安县| 泊头市| 凤庆县| 济阳县| 宁武县| 五莲县| 盐边县| 稷山县| 三江| 高台县| 邢台县| 清镇市| 西平县| 原阳县| 二连浩特市| 衡水市| 萝北县| 清镇市| 松潘县| 精河县| 竹山县| 四平市| 巢湖市| 平顶山市| 海宁市| 桃园市| 城口县| 大丰市| 华阴市| 北票市| 丽江市| 安乡县| 淮北市| 正蓝旗| 桂林市| 德兴市| 雷山县| 碌曲县|