国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于多尺度特征融合模型的遙感圖像建筑物分割
DOI:
CSTR:
作者:
作者單位:

西安建筑科技大學(xué) 信息與控制工程學(xué)院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

國家自然科學(xué)(61803293)


Building Segmentation of Remote Sensing Images based on Multiscale- feature Fusion Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對傳統深度網(wǎng)絡(luò )模型難以精確提取建筑物邊緣輪廓特征及對不同尺寸建筑物無(wú)法自適應提取的問(wèn)題,提出一種膨脹卷積特征提取的多尺度特征融合深度神經(jīng)網(wǎng)絡(luò )模型(Multiscale-feature fusion Deep Neural Networks with dilated convolution,MDNNet)對遙感圖像建筑物自動(dòng)分割的方法。首先在ResNet101模型中引入膨脹卷積擴大提取視野保留更多特征圖像分辨率;其次利用多尺度特征融合模塊獲取多個(gè)尺度的建筑物特征并將不同尺度的特征融合;最終利用特征解碼模塊將特征圖恢復到原始輸入圖像尺寸,實(shí)現遙感圖像建筑物精確分割。在WHU遙感圖像數據集的實(shí)驗結果表明,提出模型有效克服道路、樹(shù)木和陰影等因素影響,分割結果有效保留建筑物邊界細節信息,有效提升分割精度,像素準確率PA達到0.864,平均交并比mIoU達到0.815,召回率Recall達到0.862。

    Abstract:

    Towards how to solve the problem that traditional deep neural networks model is difficult to accurately extract the edge contour features of buildings and cannot adaptively extract buildings of different sizes, a method of automatic segmentation of remote sensing image buildings on account of Multiscale-feature fusion Deep Neural Networks with dilated convolution (MDNNet) is proposed. To begin with, expansion convolution is introduced into ResNet101 model to expand the extraction field and preserve more feature image resolution. Secondly, multiscale feature fusion module is used to obtain building features of multiple scales and fuse features of different scales. Eventually, the feature decoding module is used to restore the feature image to the original input image size, thus realizing accurate segmentation of remote sensing image buildings. The experimental results on WHU Building change detection dataset show that the proposed model effectively overcomes the influence of road, trees and shadows, and the segmentation results effectively retain the detailed information of building boundaries and improve the segmentation accuracy. The pixel accuracy PA comes to 0.864, the mean Intersection over Union mIoU comes to 0.815 and the Recall rate comes to 0.862.

    參考文獻
    相似文獻
    引證文獻
引用本文

徐勝軍,歐陽(yáng)樸衍,郭學(xué)源,Taha Muthar Khan.基于多尺度特征融合模型的遙感圖像建筑物分割計算機測量與控制[J].,2020,28(7):214-219.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2019-12-10
  • 最后修改日期:2019-12-25
  • 錄用日期:2019-12-25
  • 在線(xiàn)發(fā)布日期: 2020-07-14
  • 出版日期:
文章二維碼
怀仁县| 富民县| 太和县| 临安市| 罗平县| 晋江市| 萨迦县| 侯马市| 宝清县| 铁岭县| 通城县| 宁城县| 万荣县| 禹城市| 南充市| 天门市| 玉溪市| 鄯善县| 南昌市| 博野县| 达拉特旗| 土默特左旗| 呼和浩特市| 海安县| 锦屏县| 多伦县| 淄博市| 科技| 崇州市| 加查县| 铜陵市| 灵宝市| 兰溪市| 梨树县| 河北区| 新乐市| 墨竹工卡县| 南宫市| 龙川县| 大竹县| 红原县|