国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

融合目標檢測和人體關(guān)鍵點(diǎn)檢測的鐵路司機行為識別
DOI:
CSTR:
作者:
作者單位:

西南交通大學(xué)機械工程學(xué)院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

TP391

基金項目:

國家自然科學(xué)基金資助項目(51775449)


Railway driver behavior recognition based on fusion object detection and person keypoints detection
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    隨著(zhù)我國經(jīng)濟的快速發(fā)展,鐵路運輸在交通運輸的地位愈為重要,在傳統人工監管無(wú)力應對鐵路司機安全監督的情況下,使用機器實(shí)現自動(dòng)實(shí)時(shí)司機行為識別早已成為了一項極有意義的工作。為實(shí)現隨車(chē)部署、實(shí)時(shí)進(jìn)行鐵路司機行為識別的目的,基于目標框檢測算法實(shí)現目標檢測和關(guān)鍵點(diǎn)檢測的融合,搭建了一種可以同時(shí)檢測司機人體關(guān)鍵點(diǎn)和手機的神經(jīng)網(wǎng)絡(luò )。經(jīng)過(guò)網(wǎng)絡(luò )運行輸出人體姿態(tài)后,通過(guò)分析人體各關(guān)節角度和人體關(guān)鍵點(diǎn)與手機目標的位置關(guān)系等后處理對六類(lèi)司機行為進(jìn)行了分類(lèi)識別,并通過(guò)TensorRT框架對模型進(jìn)行了模型推理速度的加速和體積上的壓縮。實(shí)驗表明,該模型在嵌入式設備TX2上推理速度為25ms,可以達到較好檢測效果下實(shí)時(shí)運行的目標。實(shí)現了實(shí)時(shí)進(jìn)行鐵路司機行為識別的目的。

    Abstract:

    With the rapid development of China's economy, the role of railway transportation in transportation becomes more important. In the case that traditional manual supervision is unable to cope with the safety supervision of railway drivers, using machines to realize automatic real-time driver behavior recognition has already become a very meaningful task. In order to realize the real-time railway driver behavior recognition on the embedded device, a neural network that can simultaneously detect key points of the driver's human body and mobile phones is constructed based on object detection and person keypoints detection. Six types of driver behavior are identified by post processing of analyze the relationship between the joint angles of the human body and the key points of the human and the target of the mobile phone. And the model was accelerated and compressed for operation on em-bedded devices through TensorRT framework. Experiments show that the inference time of model is 25ms on the embedded device TX2, which can achieve the goal of better accuracy and real-time op-eration. The purpose of real-time identification of railway driver behavior was achieved.

    參考文獻
    相似文獻
    引證文獻
引用本文

姚巍巍,張潔.融合目標檢測和人體關(guān)鍵點(diǎn)檢測的鐵路司機行為識別計算機測量與控制[J].,2020,28(6):212-216.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2019-11-20
  • 最后修改日期:2019-12-09
  • 錄用日期:2019-12-09
  • 在線(xiàn)發(fā)布日期: 2020-06-17
  • 出版日期:
文章二維碼
绥芬河市| 晋城| 东宁县| 海林市| 和政县| 老河口市| 昌吉市| 韶山市| 蕉岭县| 工布江达县| 满城县| 顺昌县| 竹北市| 襄城县| 塔河县| 米脂县| 庆元县| 栾川县| 桂平市| 灵寿县| 阳信县| 巢湖市| 绥宁县| 遂平县| 神池县| 齐齐哈尔市| 宣恩县| 交口县| 蕉岭县| 祥云县| 平湖市| 清水县| 柯坪县| 苏尼特左旗| 梁山县| 怀宁县| 冷水江市| 托克托县| 江达县| 大埔区| 沙田区|