国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于深度學(xué)習的傳感器故障數據分析系統設計
DOI:
CSTR:
作者:
作者單位:

航空工業(yè)西安飛機工業(yè)集團有限公司

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:


Design of sensor fault data analysis system based on deep learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    傳統傳感器故障數據分析系統硬件及程序設計不夠兼容,存在實(shí)時(shí)性差,分析結果不夠精準的問(wèn)題。據此,提出基于深度學(xué)習設計了一種新的傳感器故障數據分析系統,由傳感器、ARM數據處理器、主電路板、FODI數據處理器、集成采集接口板、故障數據傳感器、多轉質(zhì)感器、場(chǎng)效應傳感器、GKCL儲存器組成系統的硬件結構,ASVH248的最大特點(diǎn)就是分辨率高,能夠有效提高系統顯示的清晰度。分別設計了故障數據采集程序、數據處理程序和數據存儲程序。為了檢測系統的有效性,由采集程序采集傳感器內部數據,處理程序對數據結果進(jìn)行分析,存儲程序負責記錄分析后的結果。設定對比實(shí)驗,結果表明,基于深度學(xué)習設計的傳感器故障數據分析系統分析結果精準度提高了15.28%,實(shí)時(shí)性更強,使用價(jià)值更高。

    Abstract:

    The traditional sensor fault data analysis system hardware and program design are not compatible enough, and there is a problem that the real-time performance is poor and the analysis result is not accurate enough. Based on this, a new sensor fault data analysis system based on deep learning is proposed, which consists of sensor, ARM data processor, main circuit board, FODI data processor, integrated acquisition interface board, fault data sensor, multi-turn sensor, The field effect sensor and GKCL memory form the hardware structure of the system. The biggest feature of ASVH248 is the high resolution, which can effectively improve the clarity of the system display. Fault data acquisition programs, data processing programs, and data storage programs are designed separately. In order to check the effectiveness of the system, the internal data of the sensor is collected by the acquisition program, the processing program analyzes the data result, and the storage program is responsible for recording the result of the analysis. The contrast experiment was set up. The results show that the accuracy of the analysis results of the sensor fault data analysis system based on deep learning design is 15.28%, and the real-time performance is stronger and the use value is higher.

    參考文獻
    相似文獻
    引證文獻
引用本文

王心宇,魏詩(shī)朦,陳韻秋.基于深度學(xué)習的傳感器故障數據分析系統設計計算機測量與控制[J].,2020,28(6):266-270.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2019-10-23
  • 最后修改日期:2019-11-08
  • 錄用日期:2019-11-11
  • 在線(xiàn)發(fā)布日期: 2020-06-17
  • 出版日期:
文章二維碼
武山县| 岳池县| 措勤县| 乌鲁木齐县| 濉溪县| 康马县| 淄博市| 上犹县| 互助| 延庆县| 海城市| 天峻县| 尼勒克县| 辉县市| 东山县| 庆安县| 金阳县| 南京市| 万载县| 丹江口市| 元谋县| 将乐县| 汉川市| 松阳县| 海原县| 镇雄县| 兴城市| 大田县| 五指山市| 太原市| 内江市| 亳州市| 镇赉县| 那坡县| 兰考县| 长武县| 开阳县| 文化| 安龙县| 明星| 曲阳县|