国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于PNN的汽車(chē)ABS系統中壓力調節器和輪速傳感器的故障診斷
DOI:
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

江蘇省自然科學(xué)基金面上項目(BK20151345)


Fault?diagnosis?of pressure regulator?and??wheel?speed sensor for the?anti-lock?braking?system?of?automobiles?based?on?probabilistic?neural?network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    在汽車(chē)防抱死制動(dòng)系統(ABS)中,壓力調節器和輪速傳感器起著(zhù)非常重要的作用,為了進(jìn)一步完善汽車(chē)防抱死制動(dòng)系統的制動(dòng)性能,文中提出一種基于概率神經(jīng)網(wǎng)絡(luò )(PNN)的壓力調節器和輪速傳感器的故障診斷方法。基于高附著(zhù)均一路面,起車(chē)時(shí)制動(dòng)及單一的壓力調節器或者輪速傳感器故障的試驗數據,分別建立了基于概率神經(jīng)網(wǎng)絡(luò )的壓力調節器故障診斷模型和輪速傳感器故障診斷模型,并與BP神經(jīng)網(wǎng)絡(luò )進(jìn)行了比較。仿真結果表明,利用相同的訓練樣本集對概率神經(jīng)網(wǎng)絡(luò )和BP神經(jīng)網(wǎng)絡(luò )進(jìn)行訓練時(shí),基于概率神經(jīng)網(wǎng)絡(luò )的壓力調節器故障診斷模型和輪速傳感器故障診斷模型在訓練時(shí)間和診斷精度上明顯優(yōu)于BP神經(jīng)網(wǎng)絡(luò ),并且利用測試樣本對建好的壓力調節器故障模型和輪速傳感器故障模型進(jìn)行檢測時(shí),無(wú)論測試樣本的順序發(fā)生什么變化,基于概率神經(jīng)網(wǎng)絡(luò )的故障模型都能夠準確的進(jìn)行故障識別。

    Abstract:

    Pressure?regulator?and?wheel?speed?sensor?play?an?important?role?in?the?anti-lock?braking?system?of?automobiles.?In?order?to?further?improve?the?braking?performance?of?the?anti-lock?braking?system?of?automobiles,?a?fault?diagnosis?method?of?pressure?regulator?and?wheel?speed?sensor?based?on?probabilistic?neural?network?is?proposed.?Based?on?the?test?data?of?braking?and?single?pressure?regulator?or?wheel?speed?sensor?faults?when?start-up?on?high?adhesion?uniform?road?surface,?the?fault?diagnosis?models?of?pressure?regulator?and?wheel?speed?sensor?based?on?probabilistic?neural?network?are?established?respectively,?and?compared?with?BP?neural?network.?The?simulation?results?show?that?when?the?probabilistic?neural?network?and?BP?neural?network?are?trained?with?the?same?training?sample?set,?the?fault?diagnosis?model?of?pressure?regulator?and?wheel?speed?sensor?based?on?probabilistic?neural?network?is?obviously?superior?to?BP?neural?network?in?training?time?and?diagnostic?accuracy,?and?When?the?fault?models?of?pressure?regulator?and?wheel?speed?sensor?are?detected?by?the?test?sample,?the?fault?models?based?on?probabilistic?neural?network?can?accurately?identify?the?faults?no?matter?what?the?order?of?test?samples?changes.

    參考文獻
    相似文獻
    引證文獻
引用本文

孫麗娜,王佳慶,黃永紅.基于PNN的汽車(chē)ABS系統中壓力調節器和輪速傳感器的故障診斷計算機測量與控制[J].,2020,28(4):16-21.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2019-09-19
  • 最后修改日期:2019-10-17
  • 錄用日期:2019-10-18
  • 在線(xiàn)發(fā)布日期: 2020-04-15
  • 出版日期:
文章二維碼
乐都县| 赤水市| 阜南县| 兖州市| 连江县| 会宁县| 宕昌县| 乌兰察布市| 桃江县| 博爱县| 曲麻莱县| 乐都县| 体育| 潼南县| 和林格尔县| 翁牛特旗| 东源县| 海兴县| 竹山县| 交城县| 宝清县| 桐庐县| 浮梁县| 南丰县| 康平县| 景泰县| 永昌县| 邵阳县| 安阳市| 玉龙| 东方市| 奉新县| 英山县| 龙陵县| 夏河县| 贵南县| 偏关县| 房产| 安丘市| 宣武区| 上虞市|