国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

融合PSO優(yōu)化的相關(guān)變模態(tài)分解與深度學(xué)習的旋轉機械早期故障智能分類(lèi)方法
DOI:
CSTR:
作者:
作者單位:

紹興職業(yè)技術(shù)學(xué)院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

TH17

基金項目:

國家自然科學(xué)(31760182)


Early fault intelligent classification method of Rotating Machinery Based on PSO - Relevant Variational Mode Decomposition and Deep Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對旋轉機械早期故障信號呈現微弱、相互干擾,易導致故障智能分類(lèi)精度低的現狀。提出一種融合優(yōu)化的PSO-RVMD (Particle swarm optimization-Relevant Variational Mode Decomposition)與SAE (Stacked AutoEncoder)的旋轉機械早期故障分類(lèi)方法。智能分類(lèi)方法主要有信號增強與智能分類(lèi)兩階段組成。首先該方法利用所改進(jìn)的PSO-RVMD分解電機-軸承系統的早期故障振動(dòng)信號,通過(guò)定義的相關(guān)能量比概念計算各分量信號(IMFs)與原始信號之間的相關(guān)程度,篩選并重構相關(guān)程度高的分量,去除冗余與不相干的干擾與噪聲成分,實(shí)現信號增強。最后,將增強的早期微弱信號輸入到SAE模型中進(jìn)行訓練。利用SAE模型提取高層、抽象且利于分類(lèi)的深度特征且在最后一層添加BP層,直接對提取的深度特征進(jìn)行故障分類(lèi)。通過(guò)仿真與實(shí)際電機-軸承系統振動(dòng)信號驗證了該方法的有效性,結果表明該方法能快速的實(shí)現旋轉機械早期微弱故障的精確識別與診斷,提高故障特征學(xué)習與自動(dòng)分類(lèi)程度。

    Abstract:

    Aiming at the weakness and mutual interference of the early failure signals of rotating machinery, it is easy to cause the intelligent fault classification with low accuracy. An early fault classification method of rotating machinery based on PSO-RVMD (Particle Swarm Optimization-Related Variational Mode Decomposition) and SAE (Stacked AutoEncoder) is proposed. The main methods of intelligent classification are two phases of signal enhancement and intelligent classification. Firstly, Improved PSO-RVMD motor breakdown. - Early fault vibration signals of the bearing system, the correlation between each component signal (IMF component) and the original signal is calculated through the definition of the correlation energy ratio concept, the high correlation component is screened and reconstructed, the redundant and irrelevant Interference and noise components, to achieve signal enhancement. Finally, the enhanced early weak signal is input into the SAE model for training. The SAE model is used to extract the high-level, abstract and class-specific depth features, and the BP layer is added on the last layer. The extracted deep features are directly simulated for fault classification with the motor. The bearing system vibration signal verifies the effectiveness of this method. The method can quickly identify and diagnose the early weak faults of rotating machinery, and improve the learning and automatic classification of fault features.

    參考文獻
    相似文獻
    引證文獻
引用本文

董紅平,李明.融合PSO優(yōu)化的相關(guān)變模態(tài)分解與深度學(xué)習的旋轉機械早期故障智能分類(lèi)方法計算機測量與控制[J].,2020,28(1):71-75.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2019-06-30
  • 最后修改日期:2019-07-26
  • 錄用日期:2019-07-30
  • 在線(xiàn)發(fā)布日期: 2020-02-22
  • 出版日期:
文章二維碼
贞丰县| 聂荣县| 丹巴县| 南昌县| 敦煌市| 青河县| 凤庆县| 柞水县| 贵德县| 清水河县| 临颍县| 崇文区| 纳雍县| 会同县| 水富县| 凤凰县| 伊通| 固镇县| 鄂托克旗| 临泽县| 东海县| 平顺县| 阿拉善左旗| 宁陕县| 新绛县| 汉中市| 米脂县| 济南市| 无锡市| 翼城县| 松溪县| 岚皋县| 闵行区| 苍山县| 阳春市| 礼泉县| 石嘴山市| 琼海市| 鸡西市| 斗六市| 屏边|