国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于改進(jìn)的卷積神經(jīng)網(wǎng)絡(luò )的道路井蓋缺陷檢測研究
DOI:
CSTR:
作者:
作者單位:

浙江工業(yè)大學(xué)

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

國家自然科學(xué)基金(61871350)資助項目。


Research On Manhole Cover Detection Using Improved Convolutional Neural Network

Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    道路井蓋缺陷檢測對于道路維護與安全至關(guān)重要,論文提出了一種改進(jìn)的卷積神經(jīng)網(wǎng)絡(luò )算法,可實(shí)現井蓋缺陷的快速、準確檢測。算法對卷積神經(jīng)網(wǎng)絡(luò )的激活函數模型進(jìn)行了改進(jìn),針對Relu激活函數在輸入小于零時(shí)輸出設為零,導致部分缺陷信息丟失問(wèn)題,設計了MReLu和BReLu兩種改進(jìn)激活函數。在此基礎上,為了增強神經(jīng)網(wǎng)絡(luò )模型的特征表達能力,提出了雙層激活函數模型。最后,在公共數據集MNIST,CIFAR-10上進(jìn)行了比較實(shí)驗,網(wǎng)絡(luò )主要參數有批處理大小(batch size)為32,最大迭代次數為1000次,學(xué)習率為0.0001,每經(jīng)過(guò)5000次迭代衰減50%。實(shí)驗結果表明,基于改進(jìn)后的激活函數和應用雙層激活函數所構造的卷積神經(jīng)網(wǎng)絡(luò ),大大減少了訓練參數,不僅收斂速度更快,而且可以更加有效地提高分類(lèi)的準確率。

    Abstract:

    The defect detection of road manhole cover is very important for road maintenance and safety. The paper proposes an improved convolutional neural network algorithm to achieve rapid and accurate detection of manhole cover defects. The algorithm improves the activation function model of convolutional neural network. For the Relu activation function, when the input is less than zero, the output is set to zero, which resluts in lossing most of the input information.Therefore,two improved activation functions, MReLu and BReLu, are designed. On this basis, in order to enhance the feature expression ability of neural network model, a two-layer activation function model is proposed. Finally, a large number of comparative experiments were performed on the proposed algorithm in the public data set MNIST, CIFAR-10,and The main parameters of the network are batch size of 32, the maximum number of iterations is 1000, the learning rate is 0.0001, and the attenuation is 50% after 5000 iterations.The experimental results show that the convolutional neural network based on the improved activation function and the application of the two-layer activation function greatly reduces the training parameters, not only the convergence speed is faster, but also can improve the classification accuracy more effectively.

    參考文獻
    相似文獻
    引證文獻
引用本文

姚明海,隆學(xué)斌.基于改進(jìn)的卷積神經(jīng)網(wǎng)絡(luò )的道路井蓋缺陷檢測研究計算機測量與控制[J].,2020,28(1):66-70.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2019-06-21
  • 最后修改日期:2019-07-09
  • 錄用日期:2019-07-10
  • 在線(xiàn)發(fā)布日期: 2020-02-22
  • 出版日期:
文章二維碼
绵阳市| 卢氏县| 霍邱县| 林芝县| 衡水市| 古交市| 孝义市| 江门市| 顺昌县| 色达县| 玛多县| 平罗县| 延长县| 石棉县| 嘉鱼县| 建湖县| 通河县| 阿坝| 广昌县| 涞水县| 巩义市| 波密县| 通榆县| 大同县| 许昌市| 罗江县| 视频| 庆阳市| 竹北市| 白银市| 河津市| 乐亭县| 开阳县| 遂昌县| 威宁| 锡林郭勒盟| 塘沽区| 南开区| 年辖:市辖区| 宁武县| 揭西县|