国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于卷積神經(jīng)網(wǎng)絡(luò )的發(fā)動(dòng)機氣路故障診斷方法
DOI:
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

TP182;V228

基金項目:

青海省科技廳(2019-ZJ-7066)


Aero-engine Gas Path Fault Diagnostic Method based on Convolutional Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    深度學(xué)習是一種新的基于特征表示的機器學(xué)習方法。深度學(xué)習模型包含多個(gè)隱藏層,可以通過(guò)對輸入數據進(jìn)行自動(dòng)學(xué)習來(lái)獲取隱藏的功能層中的特征信息。與傳統的診斷方法相比,深度學(xué)習具備從原始信息中提取更豐富的特征的能力,因此已經(jīng)成為基于機器學(xué)習的故障診斷研究的新方向,為發(fā)動(dòng)機氣路等復雜系統故障診斷帶來(lái)了新思路。結合發(fā)動(dòng)機氣路試驗數據的特點(diǎn)與深度學(xué)習的優(yōu)勢,提出基于卷積神經(jīng)網(wǎng)絡(luò )的故障診斷方法,包括預處理、模型訓練及優(yōu)化等過(guò)程,并實(shí)現了復雜系統故障診斷預測算法平臺。經(jīng)某發(fā)動(dòng)機氣路試驗仿真數據實(shí)例驗證,提出的方法具有較好的可行性和效果,能夠充分利用深度學(xué)習的優(yōu)點(diǎn),更準確地識別發(fā)動(dòng)機氣路的健康狀況。

    Abstract:

    Deep learning is a new machine learning method based on feature representation. The deep learning model consists of multiple hidden layers, and the feature information in the hidden functional layer can be obtained by automatically learning the input data. Compared with traditional diagnostic methods, deep learning has the ability to extract more abundant features from the original information, so it has become a new area of machine learning-based fault diagnosis research. It brings new idea of the complex system fault diagnostic such as aero-engine gas path. Combining the characteristics of complex system test data and the advantages of deep learning, a fault diagnostic method based on convolutional neural network is proposed, including preprocessing, model training and optimization. Then a complex system fault diagnostic algorithm platform based-on deep learning method is realized. The simulation method of an aero-engine gas path test proves that the proposed method has good feasibility and effect, it can make full use of the advantages of deep learning and more accurately identify the health state of the aero-engine gas path.

    參考文獻
    相似文獻
    引證文獻
引用本文

元尼東珠,羅亞鋒,房紅征,楊浩.基于卷積神經(jīng)網(wǎng)絡(luò )的發(fā)動(dòng)機氣路故障診斷方法計算機測量與控制[J].,2019,27(12):14-19.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2019-05-15
  • 最后修改日期:2019-06-27
  • 錄用日期:2019-06-20
  • 在線(xiàn)發(fā)布日期: 2019-12-26
  • 出版日期:
文章二維碼
灵寿县| 夏河县| 仙桃市| 青神县| 平阳县| 马尔康县| 龙陵县| 甘德县| 古交市| 育儿| 千阳县| 衡阳县| 竹山县| 襄樊市| 藁城市| 新源县| 潢川县| 印江| 孟津县| 镇巴县| 东乌珠穆沁旗| 和田市| 鹤庆县| 和政县| 奇台县| 陆丰市| 高平市| 蕉岭县| 读书| 柳河县| 陆川县| 高邑县| 沈阳市| 友谊县| 呼玛县| 新巴尔虎右旗| 舞钢市| 油尖旺区| 湖口县| 法库县| 盐池县|