国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于深度學(xué)習的無(wú)人機巡檢圖像銷(xiāo)釘故障檢測
DOI:
CSTR:
作者:
作者單位:

深圳供電局有限公司

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

TP183

基金項目:

中國南方電網(wǎng)有限責任公司科技項目(No. 090000KK52170124)。


Pin fault detection in UAV inspection image based on deep learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    隨著(zhù)經(jīng)濟和社會(huì )的發(fā)展,發(fā)電量和用電量逐年上升。安全的電力保障關(guān)系到國計民生,在常年的使用過(guò)程中,由于電力傳輸的輸電線(xiàn)路受到外界環(huán)境的影響,使得輸電線(xiàn)路部件容易出現不同程度的破損,其中銷(xiāo)釘是固定螺母的關(guān)鍵零件,銷(xiāo)釘的脫落會(huì )導致各部件之間連接的不穩定,這給輸電網(wǎng)絡(luò )的安全運行帶來(lái)了極大的隱患。隨著(zhù)深度學(xué)習技術(shù)在計算機視覺(jué)領(lǐng)域中的應用,使得機器自動(dòng)識別銷(xiāo)釘這一輸電線(xiàn)路系統中的微小部件成為現實(shí)。采用Faster R-CNN算法對無(wú)人機巡檢圖像中的銷(xiāo)釘脫落故障進(jìn)行識別,并討論了不同分類(lèi)器對識別結果的影響,然后對ACF+Adaboost、Hough+LSD和Faster R-CNN檢測方法進(jìn)行比較。實(shí)驗結果表明,基于Faster R-CNN的目標檢測方法對于輸電線(xiàn)路中銷(xiāo)釘脫落故障的識別率可達到96%,同時(shí)對正常銷(xiāo)釘的識別率最高可達98%。

    Abstract:

    With the development of economy and society, power generation and electricity consumption increase year by year. Safe power supply is related to national economy and people"s livelihood. In the process of many years of use, due to the transmission of power transmission line is often influenced by the external environment, making it easier for the transmission line components appear different degree of damage. The pin is the key to the fixed nut parts. The shedding of pin will lead to an unstable connection between the components that brings great challenge to the safe operation of power transmission network. With the application of deep learning technology in the field of computer vision, the machine automatic identification pin which is a tiny part in the transmission line system has become a reality. In this paper, Faster R-CNN algorithm was used to identify pin shedding fault in Unmanned Aerial Vehicle (UAV) patrol image, and the impact of different classifiers on recognition results was discussed. Then Aggregate Channel Features (ACF)+Adaboost, Hough+ Line Segment Detector (LSD) and Faster R-CNN recognition methods were compared. The experimental results show that the recognition rate of Faster R-CNN based target detection method for pin falling fault in transmission lines can reach 96%, and the recognition rate of normal pin can reach 98% at the same time.

    參考文獻
    相似文獻
    引證文獻
引用本文

寧柏鋒.基于深度學(xué)習的無(wú)人機巡檢圖像銷(xiāo)釘故障檢測計算機測量與控制[J].,2019,27(11):25-29.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2019-05-06
  • 最后修改日期:2019-05-27
  • 錄用日期:2019-05-27
  • 在線(xiàn)發(fā)布日期: 2019-11-18
  • 出版日期:
文章二維碼
新巴尔虎右旗| 北碚区| 鹤壁市| 黎城县| 金门县| 汉阴县| 八宿县| 绥阳县| 沅陵县| 莱阳市| 博爱县| 临邑县| 阳朔县| 福贡县| 岫岩| 绥滨县| 山东省| 沁阳市| 奇台县| 八宿县| 梓潼县| 集贤县| 莎车县| 铁岭市| 政和县| 宜州市| 宣化县| 海阳市| 宝清县| 如东县| 海城市| 焦作市| 锡林郭勒盟| 新宾| 吴忠市| 南江县| 博爱县| 万年县| 吉隆县| 乐昌市| 福州市|