国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于三維全卷積網(wǎng)絡(luò )的肝臟和肝癌分割算法研究
DOI:
CSTR:
作者:
作者單位:

中國科學(xué)院 上海技術(shù)物理研究所

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

TP391.4

基金項目:

國家重點(diǎn)研發(fā)計劃(2017YFC0112900);


Research on Liver and Liver Tumor Segmentation Algorithm Based on 3D Full Convolutional Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為了解決計算機斷層掃描(computed tomography,CT)影像中肝臟和肝癌的準確分割問(wèn)題,提出了基于三維全卷積網(wǎng)絡(luò )的肝臟分割算法和肝癌分割算法。肝臟分割算法和肝癌分割算法都采用Vnet網(wǎng)絡(luò )進(jìn)行分割。在肝臟分割算法中,采用了形態(tài)學(xué)方法進(jìn)行后處理,提高了肝臟分割準確率。在肝癌分割算法中,采用了組合損失函數訓練Vnet網(wǎng)絡(luò ),使得Vnet網(wǎng)絡(luò )更好地收斂,并加入后處理提高了肝癌分割準確率。為了驗證算法的性能,采用MICCAI 2017 Liver Tumor Segmentation Challenge(LiTS)數據集進(jìn)行了肝臟分割和肝癌分割的5折交叉驗證實(shí)驗。肝臟分割算法在測試集的平均分割準確率為0.9510,高于Unet網(wǎng)絡(luò )和3D Unet網(wǎng)絡(luò );肝癌分割算法的平均分割準確率為0.712。實(shí)驗結果表明,肝臟分割算法可以準確地對肝臟進(jìn)行分割,肝癌分割算法也達到了較高的準確率。

    Abstract:

    In order to solve the problem of accurate segmentation of liver and liver tumor in computed tomography(CT) images, a liver segmentation algorithm based on 3D full convolution network and a liver tumor segmentation algorithm is proposed. Both the liver segmentation algorithm and the liver tumor segmentation algorithm are based on the Vnet network. In the liver segmentation algorithm, the morphological method is used for post-processing, which improves the liver segmentation accuracy. In the liver tumor segmentation algorithm, the combined loss function is used to train the Vnet network, which makes the Vnet network better converge. Post-processing is used to improve the liver tumor segmentation accuracy. In order to verify the performance of the algorithm, a 5-fold cross-validation experiment of liver segmentation and liver tumor segmentation was performed using the MICCAI 2017 Liver Tumor Segmentation Challenge (LiTS) dataset. The average segmentation accuracy of the liver segmentation algorithm in the test set was 0.9510, which was higher than that of the Unet network and the 3D Unet network; the average segmentation accuracy of the liver tumor segmentation algorithm was 0.712. The experimental results show that the liver segmentation algorithm can accurately segment the liver, and the liver tumor segmentation algorithm also achieves a high accuracy.

    參考文獻
    相似文獻
    引證文獻
引用本文

徐寶泉,凌彤輝.基于三維全卷積網(wǎng)絡(luò )的肝臟和肝癌分割算法研究計算機測量與控制[J].,2019,27(9):199-203.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2019-03-07
  • 最后修改日期:2019-03-27
  • 錄用日期:2019-03-27
  • 在線(xiàn)發(fā)布日期: 2019-09-24
  • 出版日期:
文章二維碼
阳朔县| 景洪市| 安阳市| 黔江区| 合江县| 延吉市| 青浦区| 晋城| 舒兰市| 甘洛县| 聂拉木县| 吉木乃县| 龙胜| 泰安市| 东乡族自治县| 山西省| 正镶白旗| 昌平区| 岐山县| 兴城市| 尉氏县| 宁波市| 彰化县| 荣成市| 罗甸县| 西和县| 沙湾县| 湖州市| 萝北县| 池州市| 巴楚县| 武山县| 衡阳市| 冀州市| 江源县| 尚义县| 长治县| 荃湾区| 潮安县| 扶沟县| 青海省|