国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于多元線(xiàn)性回歸的鋰動(dòng)力電池荷電狀態(tài)魯棒預測
DOI:
CSTR:
作者:
作者單位:

福州大學(xué) 數學(xué)與計算機科學(xué)學(xué)院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

TM912

基金項目:

國家重點(diǎn)研發(fā)計劃課題(2018YFB0104403),產(chǎn)學(xué)研合作項目(00101707)


Robust Prediction of state-of-charge Battery Based on Multiple Linear Regression
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    目前廣泛使用的鋰電池荷電狀態(tài)(state-of-charge, SOC)預測方法的訓練數據需要通過(guò)大量的仿真實(shí)驗獲取,而電動(dòng)汽車(chē)在充電過(guò)程中產(chǎn)生的大量的充電記錄數據并沒(méi)有得到合理利用。為了能有效利用這些充電記錄數據,將多元線(xiàn)性回歸算法應用到SOC預測中。多元線(xiàn)性回歸方法將電壓、電流、電容等物理量作為與SOC直接相關(guān)的輸入變量從而對SOC進(jìn)行回歸預測。由于SOC的時(shí)序特征,將SOC預測分為多個(gè)子預測過(guò)程,不斷迭代計算,循環(huán)預測SOC的下一時(shí)刻輸出值。同時(shí)為了克服異常樣本對SOC預測精度的影響,采用兩種常見(jiàn)的魯棒回歸算法(Theil-sen算法與RANSAC算法)來(lái)進(jìn)行SOC預測。實(shí)驗結果表明,魯棒回歸算法及多元線(xiàn)性回歸算法能夠很好地捕捉到SOC的增長(cháng)規律,相比之下,Theil-sen算法精度更高,誤差約1.398%,能夠很好地滿(mǎn)足SOC預測的實(shí)際需求。

    Abstract:

    The training data of the widely adopted lithium battery state-of-charge (SOC) prediction method needs to be obtained through plenty of simulation experiments, while the large amount of charging record data generated by the electric vehicle during the charging process is not properly utilized. In order to effectively utilize these data, a multiple linear regression algorithm is applied to the SOC prediction. The multivariate robust regression method uses the physical quantities such as voltage, current, and capacitance of the lithium battery which directly related to the SOC as input variables to perform regression prediction on the SOC. Due to the timing characteristics of the SOC, the prediction of SOC is divided into multiple sub-prediction processes, and the iterative calculation is continuously performed to cyclically predict the next output value of SOC. At the same time, two common robust regression algorithms (Theil-sen algorithm and RANSAC algorithm) are used to predict SOC in order to overcome the influence of abnormal samples on SOC prediction accuracy. The experimental results show that the robust regression algorithm and the multiple linear regression algorithm can well capture the growth law of SOC. In contrast, Theil-sen algorithm has higher precision and the error is about 1.398%, which can satisfy the actual needs of SOC prediction well.

    參考文獻
    相似文獻
    引證文獻
引用本文

張松,林偉欽,陳德旺,湯平,鄭其榮.基于多元線(xiàn)性回歸的鋰動(dòng)力電池荷電狀態(tài)魯棒預測計算機測量與控制[J].,2019,27(8):177-181.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2019-01-22
  • 最后修改日期:2019-02-18
  • 錄用日期:2019-02-18
  • 在線(xiàn)發(fā)布日期: 2019-08-13
  • 出版日期:
文章二維碼
偃师市| 澄江县| 锦屏县| 阿巴嘎旗| 尼勒克县| 荣昌县| 新野县| 南投市| 望城县| 长治县| 东光县| 盖州市| 宜春市| 江津市| 荥经县| 锦屏县| 焦作市| 晋江市| 华亭县| 鹤壁市| 宾川县| 江华| 游戏| 舒城县| 富顺县| 西峡县| 内黄县| 九龙县| 罗定市| 昌乐县| 高青县| 内丘县| 辰溪县| 长武县| 泸西县| 巫溪县| 灵宝市| 定陶县| 白水县| 收藏| 茶陵县|