国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于曼哈頓距離加權協(xié)同表示分類(lèi)的車(chē)輛識別
DOI:
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

TP391.4;TN912.3

基金項目:

國家自然科學(xué)基金(61771299)項目資助


Vehicle Recognition based on Manhattan Distance Weighted Collaborative Representation based Classification
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    加權稀疏表示分類(lèi)(WSRC)在聲頻傳感器網(wǎng)絡(luò )下的車(chē)輛識別中取得了不錯的效果。但是稀疏表示分類(lèi)(SRC)中實(shí)際上起較大作用的是字典中所有類(lèi)的協(xié)同表示,因此協(xié)同表示分類(lèi)(CRC)被提出用來(lái)提升算法效率,CRC框架還改進(jìn)了殘差計算方式來(lái)提高識別精度。在WSRC中發(fā)現保局性對提升識別率起到很好的作用,因此在CRC中引入加權編碼,提出了聲頻傳感器網(wǎng)絡(luò )下基于加權協(xié)同表示分類(lèi)(WCRC)的車(chē)輛識別方法,取得了明顯的速度(相比WSRC、SRC)以及不錯的精度(對比WSRC、CRC、SRC)提升。同時(shí)針對歐氏距離對樣本相似性判斷的不足,將曼哈頓距離引入加權編碼,進(jìn)一步地提出了基于曼哈頓距離加權協(xié)同表示分類(lèi)(Manhattan-WCRC)的車(chē)輛識別方法,取得了最高的識別率,而運算速度與WCRC接近。

    Abstract:

    Weighted Sparse Representation based Classification (WSRC) has achieved good results in vehicle recognition in acoustic sensor networks. However, the collaborative representation of all classes in the dictionary actually plays an important role in the Sparse Representation based Classification (SRC).Collaborative Representation based Classification (CRC) is proposed to improve the efficiency of the algorithm. The CRC framework also improves the residual calculation method to improve the recognition accuracy.It is found in WSRC that data locality plays a very good role in improving the recognition rate. Therefore, weighted coding is introduced into CRC, and a vehicle recognition method based on Weighted Collaborative Representation based Classification (WCRC) in acoustic sensor networks is proposed, which achieves obvious speed (compared with WSRC, SRC) and good accuracy (compared with WSRC, CRC, SRC) improvement.At the same time, in view of the shortcomings of Euclidean distance in judging sample similarity, the Manhattan distance is introduced into weighted coding, and a vehicle recognition method based on Manhattan distance Weighted Collaborative Representation based Classification(Manhattan-WCRC) is proposed. Manhattan-WCRC achieves the best recognition rate with almost the same speed as WCRC.

    參考文獻
    相似文獻
    引證文獻
引用本文

羅濤,馮玉田,王瑞.基于曼哈頓距離加權協(xié)同表示分類(lèi)的車(chē)輛識別計算機測量與控制[J].,2019,27(8):151-156.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2018-12-21
  • 最后修改日期:2018-12-21
  • 錄用日期:2019-01-07
  • 在線(xiàn)發(fā)布日期: 2019-08-13
  • 出版日期:
文章二維碼
宜黄县| 文成县| 全南县| 即墨市| 卫辉市| 松原市| 兴文县| 青田县| 惠水县| 会宁县| 诸暨市| 江安县| 中江县| 独山县| 龙泉市| 江西省| 巴彦县| 皋兰县| 广德县| 寿阳县| 德庆县| 天水市| 塘沽区| 靖江市| 嘉峪关市| 永定县| 巩义市| 滕州市| 大埔区| 汉沽区| 卫辉市| 北海市| 农安县| 南城县| 衡南县| 贞丰县| 海淀区| 南陵县| 合川市| 荥阳市| 海林市|