国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于深度信念網(wǎng)絡(luò )的腦電信號疲勞檢測系統
DOI:
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

TP391

基金項目:

基金:浙江工業(yè)大學(xué)創(chuàng )新性實(shí)驗項目(編號:cxsyxm1617)


EEG fatigue detection system based on deep belief network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    傳統的疲勞駕駛檢測系統,一般采用對面部特征進(jìn)行識別與信息提取的方式,易受到外界因素干擾,檢測效率較低。針對這一問(wèn)題,提出基于深度信念網(wǎng)絡(luò )(DBM)的腦電信號(EEG)疲勞檢測系統。結合深度信念網(wǎng)絡(luò )工作原理和系統整體框架,設計系統硬件結構和軟件功能。采用SAA7115型號信號解碼器對數字化信號進(jìn)行分離,通過(guò)采集模塊電路圖,將解碼器連接到低噪聲Video接口處,保證分離后的腦電信號為合成信號;通過(guò)TMS320DM642的DSP數字信號處理器對端口1信號進(jìn)行合成、對端口2信號進(jìn)行復合信號編碼,保證信號采集不受外界因素干擾;將受限玻爾茲曼機在硬件采集模塊中提取的信號進(jìn)行疲勞程度檢測,根據腦電信號變化強度,區分疲勞和未疲勞狀態(tài)下腦電信號特征,完成系統設計。實(shí)驗結果表明,所設計系統具有較高檢測效率,可為疲勞駕駛人員生命安全提供保障。

    Abstract:

    The traditional fatigue driving detection system generally adopts the method of identifying facial features and extracting information, which is easily interfered by external factors and has low detection efficiency. In response to this problem, an EEG fatigue detection system based on Deep Belief Network (DBM) was proposed. Combine the working principle of deep belief network and the overall framework of the system to design the hardware structure and software functions of the system. The digital signal is separated by the SAA7115 model signal decoder. The decoder is connected to the low-noise Video interface through the acquisition module circuit diagram to ensure that the separated EEG signal is a composite signal; the DSP digital signal processor of the TMS320DM642 is used to port 1 The signal is synthesized, and the composite signal of the port 2 signal is encoded to ensure that the signal acquisition is not interfered by external factors; the signal extracted by the limited Boltzmann machine in the hardware acquisition module is tested for fatigue degree, according to the intensity of the change of the EEG signal, Distinguish the characteristics of EEG signals under fatigue and unfatigued conditions, and complete the system design. The experimental results show that the designed system has high detection efficiency and can provide guarantee for the life safety of fatigue drivers.

    參考文獻
    相似文獻
    引證文獻
引用本文

朱龍飛,王鵬程.基于深度信念網(wǎng)絡(luò )的腦電信號疲勞檢測系統計算機測量與控制[J].,2019,27(5):26-29.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2018-10-29
  • 最后修改日期:2018-10-29
  • 錄用日期:2018-11-20
  • 在線(xiàn)發(fā)布日期: 2019-05-15
  • 出版日期:
文章二維碼
马龙县| 福建省| 闵行区| 临泽县| 正阳县| 巧家县| 吉木乃县| 禹城市| 施甸县| 和静县| 江源县| 宁安市| 达孜县| 苏尼特右旗| 洮南市| 榆中县| 宁南县| 德惠市| 孟州市| 甘谷县| 沙田区| 盐池县| 斗六市| 贵南县| 九龙坡区| 枣庄市| 孙吴县| 江孜县| 平武县| 鄂伦春自治旗| 文水县| 南木林县| 辉南县| 铅山县| 湘潭县| 陇川县| 平罗县| 上杭县| 南阳市| 江达县| 山阴县|