国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

挖掘數據模式結構信息的混合數據分類(lèi)方法
DOI:
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

國家自然科學(xué)基金(81701793),常州市科技計劃項目(CJ20160010),常州輕工職業(yè)技術(shù)學(xué)院博士基金(BSJJ13101010)。


A hybrid data classification method based on mining the information of data pattern structure
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    數據集中數據之間往往相互關(guān)聯(lián),所有數據整體上呈現特定的模式結構,而傳統分類(lèi)方法(如支持向量機)忽略數據關(guān)聯(lián)信息,僅僅利用數據的物理特征(如距離、相似性等)構建數據分類(lèi)模型,并在分類(lèi)階段計算測試樣本與所建立分類(lèi)模型間的相似性來(lái)預測測試樣本的標簽類(lèi)型。為了解決傳統分類(lèi)方法利用單一數據信息的問(wèn)題,提出一種挖掘數據模式結構信息的混合數據分類(lèi)方法。該方法融合了兩種不同類(lèi)型的分類(lèi)技術(shù),將使用單一數據物理特征的傳統分類(lèi)方法作為普通分類(lèi)方法,將利用數據模式結構信息的分類(lèi)方法作為高級分類(lèi)方法。特別地,該方法不僅可有效地識別數據模式結構信息以提高數據分類(lèi)性能,還能提高傳統分類(lèi)方法的泛化能力。在人造數據集和UCI真實(shí)數據集上的大量實(shí)驗結果表明了該混合數據分類(lèi)方法的有效性,其分類(lèi)性能優(yōu)于傳統分類(lèi)方法。

    Abstract:

    To the best of our knowledge, data are often correlated with other data in a dataset, and as a whole, a specific pattern structure is presented from all of the data. However, traditional classification methods (e.g., the support vector machine, SVM) do not take into account the correlation information between pair of data, and classification models are built just by taking advantage of the physical features (e.g., distance or similarity) of the input training data samples. Furthermore, data classification is realized by determining the similarities between the testing data samples and the built classification models in prediction phase. In order to solve the problem on the classification using the individual data information by traditional classification techniques, a hybrid data classification method based on mining the information of data pattern structure (HDCM) is proposed. The proposed classification method consists of two different types of classification techniques, on the one hand, the traditional classification methods based on using sole physical features of data are regarded as common classification methods, and on the other hand, the classification approach based on utilizing the information of data pattern structure is considered as advanced classification methods. In particular the proposed classification method not only has facility in effectively identifying the information of data pattern structure to enhance classification performance, but generalization ability of traditional classification approaches is promoted. A large number of experimental results on synthetic and UCI real-world datasets demonstrate the effectiveness of the proposed classification technique, and better classification performance can be obtained by the proposed classification technique in comparison to traditional classification methods.

    參考文獻
    相似文獻
    引證文獻
引用本文

王惠宇,顧蘇杭.挖掘數據模式結構信息的混合數據分類(lèi)方法計算機測量與控制[J].,2019,27(4):190-197.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2018-10-16
  • 最后修改日期:2018-10-25
  • 錄用日期:2018-10-25
  • 在線(xiàn)發(fā)布日期: 2019-04-26
  • 出版日期:
文章二維碼
五原县| 聂拉木县| 玉门市| 昌吉市| 泊头市| 许昌市| 克拉玛依市| 博白县| 浪卡子县| 左贡县| 昭通市| 尉氏县| 乌拉特前旗| 河北省| 莱芜市| 乌兰县| 乐昌市| 芜湖县| 聂荣县| 江山市| 保靖县| 万州区| 苍溪县| 离岛区| 大埔县| 长兴县| 罗山县| 嘉荫县| 林西县| 贞丰县| 汤原县| 梁河县| 莱州市| 沙坪坝区| 开鲁县| 淮南市| 锡林郭勒盟| 安多县| 蒙阴县| 承德市| 炉霍县|