国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于改進(jìn)神經(jīng)網(wǎng)絡(luò )算法的醫療鋰電池PHM系統設計
DOI:
CSTR:
作者:
作者單位:

上海第二工業(yè)大學(xué) 智能制造與控制工程學(xué)院,,,,上海市第一人民醫院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

TP206

基金項目:

上海第二工業(yè)大學(xué)研究生項目基金(基金號:EGD18YJ0003);


Electromedical Lithium Battery PHM System Based on Improved Neural Network Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對醫療電子設備鋰電池不確定性發(fā)生故障耽誤病人救治的問(wèn)題,提出了一套醫療電子設備鋰電池故障預測與健康管理系統(Prognostics and Health Management-PHM)。搭建了一套醫療電子設備鋰電池數據測試與退化狀態(tài)模擬的實(shí)驗平臺。為了反映醫療電子設備鋰電池健康狀態(tài),將鋰電池四個(gè)健康因子作為醫療電子設備鋰電池退化狀態(tài)的特征進(jìn)行提取,并通過(guò)非線(xiàn)性自回歸(Nonlinear Autogressive with Exogenous Inputs-NARX)神經(jīng)網(wǎng)絡(luò ),對四個(gè)健康因子的數據進(jìn)行訓練,訓練后用于容量估計,得出等間隔放電時(shí)間序列能夠較好地表征鋰電池健康狀態(tài)。為了提高基本粒子濾波算法(Particle Filter-PF)的精度從而更精確地預測鋰電池剩余壽命(Remaing Useful Life-RUL),通過(guò)人工免疫粒子濾波算法(Artificial Immune Particle Filter-AIPF)與經(jīng)驗模型對鋰電池進(jìn)行剩余壽命預測,并將PF預測的結果與AIPF預測的結果進(jìn)行對比,發(fā)現AIPF預測更加準確,說(shuō)明AIPF有效抑制了PF重采樣過(guò)程中粒子退化問(wèn)題,驗證了醫療電子設備鋰電池故障預測與健康管理系統的可行性與可實(shí)施性。

    Abstract:

    In order to solve the problem of failure of patients with failures caused by the uncertainty of lithium-ion batteries in medical electronic equipments, a set of prognostics and health management (PHM) systems for lithium-ion batteries in medical electronic equipment was proposed. An experiment platform for data testing and degradation status simulation of lithium batteries for medical electronic equipment was built. In order to reflect the health status of lithium-ion batteries for medical electronic devices, the four health factors of lithium batteries are extracted as characteristics of the degradation status of lithium-ion batteries for medical electronic devices, and they are passed through a nonlinear auto-regressive with exogenous inputs (NARX) neural network. The data of the health factors were trained and used for capacity estimation after training, and the equal interval discharge time series could be used to better characterize the lithium battery health status. In order to improve the precision of the Particle Filter-PF and more accurately predict the Reamaling Useful Life-RUL, the Artificial Immune Particle Filter (AIPF) and the Empirical Model for Lithium The battery performs the remaining life prediction, and compares the PF prediction result with the AIPF prediction result, and finds that the AIFF prediction is more accurate, indicating that AIFF effectively inhibits the particle degradation problem in the PF re-sampling process, and verifies the failure prediction of the lithium ion battery for medical electronic equipment. Health management system feasibility and enforceability.

    參考文獻
    相似文獻
    引證文獻
引用本文

何成,劉長(cháng)春,武洋,吳濤,陳童.基于改進(jìn)神經(jīng)網(wǎng)絡(luò )算法的醫療鋰電池PHM系統設計計算機測量與控制[J].,2018,26(12):72-76.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2018-10-07
  • 最后修改日期:2018-11-07
  • 錄用日期:2018-11-07
  • 在線(xiàn)發(fā)布日期: 2018-12-21
  • 出版日期:
文章二維碼
长宁县| 苗栗县| 全椒县| 宁陵县| 镇康县| 怀宁县| 宜宾县| 尖扎县| 盐山县| 特克斯县| 宕昌县| 沅陵县| 瑞金市| 芷江| 苗栗县| 石狮市| 安岳县| 云林县| 保德县| 民乐县| 威信县| 拉萨市| 宜君县| 丰城市| 定襄县| 墨竹工卡县| 罗定市| 鄯善县| 光泽县| 汾西县| 定南县| 黄石市| 太和县| 景德镇市| 修武县| 民权县| 周宁县| 金湖县| 扶绥县| 高阳县| 张家界市|