国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于級聯(lián)端對端深度架構的交通標志識別方法
DOI:
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

國家自然科學(xué)(61703054);陜西省重點(diǎn)研發(fā)計劃重點(diǎn)項目(2018ZDXM-GY-044);裝備預研教育部聯(lián)合基金(6141A02022322);高等學(xué)校學(xué)科創(chuàng )新引智計劃項目(B14043);中央高校基本科研業(yè)務(wù)費高新技術(shù)研究培育項目(300102248202)


A method of traffic sign recognition based on the cascade and end-to-end depth architecture
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    交通標志的正確識別是智能車(chē)輛規范行駛、道路交通安全的前提。為解決智能車(chē)采集目標圖像模糊、分辨率低,造成識別精度低且時(shí)效性差的問(wèn)題,構建一種基于級聯(lián)深度網(wǎng)絡(luò )的交通標志識別模型,該模型級聯(lián)超分辨率處理網(wǎng)絡(luò )ESPCN與目標檢測識別網(wǎng)絡(luò )RFCN,ESPCN網(wǎng)絡(luò )提高輸入采集圖像的分辨率,為低分辨率圖像實(shí)現超分辨率處理,RFCN網(wǎng)絡(luò )提取圖像全局特征,實(shí)現交通標志的檢測與分類(lèi)識別。平衡采樣及多尺度的訓練策略結合數據增強的預處理方法,增強了網(wǎng)絡(luò )模型的魯棒性及擴展性。經(jīng)實(shí)驗驗證,算法模型針對常見(jiàn)交通標志識別率達到98.16%,召回率達到96.2%,且魯棒性較好。

    Abstract:

    The correct identification of traffic signs is a prerequisite for smart vehicles to regulate driving and road traffic safety. In order to solve the problem that the target image of the smart car is blurred and the resolution is low, resulting in low recognition accuracy and poor timeliness, a traffic sign recognition model based on cascading depth network is constructed. The model cascades the super-resolution processing network ESPCN and target detection. Identifying the network RFCN, the ESPCN network improves the resolution of the input captured image, achieves super-resolution processing for low-resolution images, and extracts global features of the image from the RFCN network to realize the detection and classification of traffic signs. Balanced sampling and multi-scale training strategies combined with data-enhanced pre-processing methods enhance the robustness and scalability of the network model. The experimental results show that the recognition rate of common traffic signs is 98.16%, the recall rate is 96.2%, and the robustness is good.

    參考文獻
    相似文獻
    引證文獻
引用本文

樊星,沈超,徐江,連心雨,劉占文.基于級聯(lián)端對端深度架構的交通標志識別方法計算機測量與控制[J].,2019,27(4):143-148.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2018-09-30
  • 最后修改日期:2018-11-06
  • 錄用日期:2018-11-07
  • 在線(xiàn)發(fā)布日期: 2019-04-26
  • 出版日期:
文章二維碼
房山区| 鸡泽县| 宁阳县| 邯郸市| 鹿泉市| 崇阳县| 宁陕县| 平安县| 吴旗县| 绥滨县| 南皮县| 即墨市| 离岛区| 班戈县| 乐山市| 商南县| 宁陕县| 稻城县| 汶上县| 中江县| 武平县| 揭西县| 阜宁县| 南涧| 绥中县| 剑河县| 民乐县| 霸州市| 平塘县| 乳山市| 阜新| 施甸县| 定边县| 合肥市| 阿勒泰市| 临猗县| 逊克县| 称多县| 徐闻县| 唐河县| 汾阳市|