国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

融合PCA的支持向量機人臉檢測研究
DOI:
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:


Research on face detection based on improved support vector machine combined with PCA
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    支持向量機(Support Vector Machine,SVM)作為一種經(jīng)典的非線(xiàn)性分類(lèi)器,用于模式識別,可以將訓練樣本從不可線(xiàn)性分類(lèi)的低維空間映射到可線(xiàn)性分類(lèi)的高維空間,再做分類(lèi),本文主要訓練支持向量機使它學(xué)會(huì )區分人臉和非人臉。支持向量機的數學(xué)推導完備,算法邏輯嚴密,整體上比Adaboost算法復雜,但在樣本量較少的情況下效果良好,因此有樣本優(yōu)勢。支撐它的理論包含泛化性理論、最優(yōu)化理論和核函數等,這些理論也被學(xué)術(shù)界廣泛用于其他機器學(xué)習算法如神經(jīng)網(wǎng)絡(luò ),幾十年來(lái)被證明具有很高的可靠性。同時(shí)本文論述主成分分析技術(shù)(PCA)用于壓縮數據,實(shí)現數據降維,在數據預處理方面算法提供了很大幫助,使SVM支持向量機的輸入數據維數大幅下降,大大提高了運算和檢測時(shí)間。

    Abstract:

    Support Vector Machine (SVM), as a classical nonlinear classifier, is used for pattern recognition. It can map the training samples from the low dimensional space of never linear classification to the high dimensional space of the linear classification, and then do the classification. This paper mainly trains the classifier to make it learn to distinguish the face and the non face. The support vector machine has complete mathematical derivation, rigorous algorithm logic, and more complex than Adaboost on the whole, but it has a good effect in the case of less sample size, so there is a sample advantage. The theory that supports it includes generalization theory, optimization theory and kernel function, which are also widely used in other machine learning algorithms, such as neural networks, which have been proved to have high reliability for several decades. At the same time, this paper discusses the principal component analysis (PCA) technology to compress data, realize data reduction, and provide great help to the algorithm of data preprocessing, which greatly reduces the dimension of input data of SVM support vector machine, and greatly improves the operation and detection time.

    參考文獻
    相似文獻
    引證文獻
引用本文

李宜清,程武山.融合PCA的支持向量機人臉檢測研究計算機測量與控制[J].,2019,27(3):49-54.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2018-09-17
  • 最后修改日期:2018-10-16
  • 錄用日期:2018-10-17
  • 在線(xiàn)發(fā)布日期: 2019-03-15
  • 出版日期:
文章二維碼
芒康县| 渭源县| 邢台市| 政和县| 娱乐| 十堰市| 岫岩| 开化县| 阳谷县| 五峰| 房产| 拉孜县| 菏泽市| 淮阳县| 莲花县| 庆元县| 庆城县| 伊川县| 泰宁县| 皋兰县| 绵阳市| 峨山| 通城县| 专栏| 曲周县| 建瓯市| 冀州市| 玛沁县| 鹤庆县| 阜阳市| 花莲县| 册亨县| 芒康县| 丰县| 普陀区| 公主岭市| 郑州市| 富裕县| 绥江县| 尤溪县| 来凤县|