国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于深度主動(dòng)學(xué)習的磁片表面缺陷檢測
DOI:
CSTR:
作者:
作者單位:

浙江工業(yè)大學(xué)

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

面向非特定產(chǎn)品質(zhì)量檢測的一般性目標識別方法研究,國家自然科學(xué)基金項目(面上項目,重點(diǎn)項目,重大項目)


Deep active learning in the detection of the surface defects on magnetic sheet
Author:
Affiliation:

Zhejiang University of Technology

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    摘要:磁片表面缺陷的檢測一直是磁片廠(chǎng)流水線(xiàn)生產(chǎn)中提高生產(chǎn)效率、降低生產(chǎn)成本的重要環(huán)節。當前多種機器視覺(jué)檢測方法已經(jīng)被應用,這些方法都是采取人工提取缺陷特征,但由于磁片表面對比度低,磨痕紋理干擾和缺陷塊小且亮度變化大等難點(diǎn),導致準確度不高、通用性不強;另外在實(shí)際生產(chǎn)中巨大數據量獲取容易,而人工標注成本高;為此提出一種基于深度主動(dòng)學(xué)習的磁片表面缺陷檢測方法可以解決以上兩個(gè)問(wèn)題;該方法首先,結合邊緣檢測和模板匹配算法將磁片前景和背景進(jìn)行分割;其次,使用Inception-Resnet-v2深度神經(jīng)網(wǎng)絡(luò )對樣本進(jìn)行訓練,完成對缺陷圖像的識別;最后,在深度學(xué)習過(guò)程中,提出一種主動(dòng)學(xué)習的方法來(lái)克服數據集龐大但標注成本高的難點(diǎn)。實(shí)驗結果表明,該方法的缺陷檢測識別率達到了96.7%,并且最多能節省25%的人力標注成本。

    Abstract:

    Abstract: The detection of the surface defects on magnetic sheet has played an important role in the production efficiency and the cost of production in the production line of the magnetic sheet factory. A variety of machine vision methods has been applied, they are taken to extract features of artificial defects, but because the disk surface has low contrast, wear texture interference and small changes in the brightness and defects of the difficulties, they lead to less accuracy and versatility; in addition ,it’s easy to obtain the huge data in the actual production volume ,but manual annotation has the high cost; this paper propose a deep active learning method of disk surface defect solve the above two problems; firstly, the template matching algorithm with edge detection will segment the disk foreground and background; secondly, the samples are trained using Inception-Resnet-v2 deep neural network, completing the identification of defect image; finally, in the deep learning process, proposes an active learning method to overcome the large data set but the annotation cost high. The experimental results show that the detection recognition rate of the proposed method reaches 96.7% and can save up to 25% of the cost of human annotation.

    參考文獻
    相似文獻
    引證文獻
引用本文

姚明海,陳志浩.基于深度主動(dòng)學(xué)習的磁片表面缺陷檢測計算機測量與控制[J].,2018,26(9):29-33.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2018-01-17
  • 最后修改日期:2018-02-26
  • 錄用日期:2018-02-26
  • 在線(xiàn)發(fā)布日期: 2018-09-14
  • 出版日期:
文章二維碼
阿尔山市| 辽中县| 嘉义市| 睢宁县| 延长县| 谢通门县| 新余市| 剑阁县| 新绛县| 循化| 司法| 邢台市| 安顺市| 荆州市| 武宁县| 土默特右旗| 旬邑县| 南宫市| 古蔺县| 大理市| 平利县| 平陆县| 涞源县| 靖边县| 江永县| 洪雅县| 凤台县| 富宁县| 卓资县| 桑日县| 家居| 桐柏县| 古蔺县| 元江| 隆林| 林芝县| 民丰县| 潜江市| 左权县| 师宗县| 西乡县|