国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

車(chē)牌超分辨率重建與識別
DOI:
CSTR:
作者:
作者單位:

四川大學(xué)電子信息學(xué)院,四川大學(xué)電子信息學(xué)院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:


License Plate Super-Resolution Reconstruction and Recognition
Author:
Affiliation:

College of Electronics and Information Engineering, Sichuan University,College of Electronics and Information Engineering, Sichuan University

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為了從圖片中快速準確地識別車(chē)牌,提出一種結合圖像超分辨率技術(shù)的車(chē)牌識別方案。車(chē)牌圖片具有明顯的特定的模式特征,只是具體的字符編碼不同。因此車(chē)牌圖片非常適合做超分辨率重建。本文提出的系統主要由車(chē)牌檢測定位、車(chē)牌超分辨率重建、字符分割、字符識別等模塊組成。綜合基于邊緣、基于顏色和基于最大穩定極值區域三種車(chē)牌檢測策略并采用并行編程方法來(lái)綜合檢測結果得到候選車(chē)牌。采用車(chē)牌圖片正負樣本來(lái)訓練支持向量機分類(lèi)器。得到分類(lèi)器模型后對候選車(chē)牌判決得到真正的車(chē)牌。隨后對真實(shí)車(chē)牌圖片進(jìn)行超分辨率重建。該部分主要由基于固定鄰域回歸的方法實(shí)現。這種方法綜合了稀疏字典學(xué)習和領(lǐng)域嵌入的方法,比較好的兼顧了準確率和計算速度。運用OpenCV提供的圖像處理庫來(lái)對重建后的圖片做字符分割。得到單獨的字符圖片后采用人工神經(jīng)網(wǎng)絡(luò )進(jìn)行識別。識別前先使用一定數量的字符圖片對網(wǎng)絡(luò )進(jìn)行有監督訓練獲取識別模型。采用一個(gè)單隱層的神經(jīng)網(wǎng)絡(luò ),運用反向傳播算法進(jìn)行訓練得到識別模型。最后提取字符圖片的特征并輸入網(wǎng)絡(luò )進(jìn)行分類(lèi)完成識別。為了測試系統的表現,在實(shí)際場(chǎng)景中采集了一百張車(chē)牌圖片作為測試集。實(shí)驗表明,該系統具有較高識別準確率和較快的處理速度。

    Abstract:

    On purpose of identifying the license plate quickly and accurately from an well captured image, a license plate recognition scheme with the image super-resolution technology is proposed. License plate pictures have similar pattern features though coded with different numbers and characters. Therefore, license plate images are very suitable for super-resolution reconstruction. The system proposed in this paper is mainly composed of license plate detection and location, super-resolution reconstruction, character segmentation, character recognition and other modules. The three license plate detection strategies based on edge detection, color processing and maximum stability and extreme region algorithm are synthesized with parallel programming skills to get the candidate license plates. The support vector machine classifier is trained by using positive and negative samples of license plate images in advance. After the classifier is obtained, the real license plate is selected with the prediction model. The real license plate is then reconstructed with super-resolution technic. This stage is implemented mainly by the method based on the anchored neighborhood regression. This method combines the advantages of sparse dictionary learning and neighborhood embedding. Thus the accuracy and speed of calculation are both well taken into account. The OpenCV library is employed in the project to do character segmentation for the reconstructed image. An artificial neural network is then employed on the recognition stage. Before recognition, a certain number of positive and negative samples of character images are prepared to train the recognition models. In this paper, we use two single hidden layer neural networks and train with back propagation algorithm. After the network is fine tuned the features of the numbers and characters from test images are sent to the networks to complete the finial recognition. In order to test the performance of the system, one hundred pictures of the license plate collected from the actual scenes serve as the test set. Experiments show that the system has high recognition accuracy and fast processing speed.

    參考文獻
    相似文獻
    引證文獻
引用本文

曾超,陳雨.車(chē)牌超分辨率重建與識別計算機測量與控制[J].,2018,26(3):244-249.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2017-12-18
  • 最后修改日期:2018-01-11
  • 錄用日期:2018-01-15
  • 在線(xiàn)發(fā)布日期: 2018-03-29
  • 出版日期:
文章二維碼
霍林郭勒市| 渭源县| 洞口县| 佛山市| 浮山县| 杂多县| 临沭县| 高阳县| 九龙县| 芷江| 平舆县| 光泽县| 临西县| 东乡族自治县| 宁波市| 张家川| 临邑县| 山阴县| 即墨市| 裕民县| 沅陵县| 碌曲县| 长治县| 哈巴河县| 图们市| 乐陵市| 白城市| 吉林市| 明水县| 黔南| 巴南区| 馆陶县| 于都县| 珠海市| 邛崃市| 琼结县| 镇安县| 清水县| 柯坪县| 樟树市| 隆安县|