国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

文化基因算法優(yōu)化PID神經(jīng)網(wǎng)絡(luò )系統辨識
DOI:
CSTR:
作者:
作者單位:

中北大學(xué) 機電工程學(xué)院,中北大學(xué) 機電工程學(xué)院,中北大學(xué) 機電工程學(xué)院,中北大學(xué) 機電工程學(xué)院,豫西工業(yè)集團

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:


Memetic Algorithm Optimize PID Neural Network System Identification
Author:
Affiliation:

College of Mechanical and Electrical Engineering,North University of China,College of Mechanical and Electrical Engineering,North University of China,College of Mechanical and Electrical Engineering,North University of China,College of Mechanical and Electrical Engineering,North University of China,Yuxi Industrial Group co

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    PID神經(jīng)網(wǎng)絡(luò )(PIDNN)是一種融合比例、微分、積分環(huán)節,結構簡(jiǎn)單固定,且具備動(dòng)態(tài)網(wǎng)絡(luò )特點(diǎn)的神經(jīng)網(wǎng)絡(luò )模型,適合于非線(xiàn)性系統辨識。但是網(wǎng)絡(luò )對初始權值和樣本質(zhì)量敏感,參數難以選定,導致網(wǎng)絡(luò )收斂速度慢,容易陷入局部極小。提出一種采用文化基因算法(Memetic Algorithm)優(yōu)化網(wǎng)絡(luò )權值的方法。在差分進(jìn)化(DE)算法全局尋優(yōu)結果基礎上,通過(guò)混沌局部搜索算法,進(jìn)一步優(yōu)化網(wǎng)絡(luò )權值;根據PIDNN特性,在優(yōu)化過(guò)程中加入先驗知識,采用L1正則項,對目標函數正則化,避免算法搜索到無(wú)潛力解,保證網(wǎng)絡(luò )模型泛化能力。對一雜非線(xiàn)性系統進(jìn)行辨識仿真,仿真結果表明優(yōu)化后的神經(jīng)網(wǎng)絡(luò )辨識精度高,有良好的泛化能力。

    Abstract:

    PID neural network (PIDNN) is a neural network model that integrates proportional, differential and integral links, and has simple structure . It is suitable for nonlinear system identification. However, the BP algorithm used in the network is sensitive to the initial weight and sample quality, and it is difficult to select the parameters, which leads to the slow convergence of the network and easy to fall into the local minimum. A method of optimizing network weight by cultural genetic algorithm is proposed. Differential evolution algorithm in global optimization based on the results, the chaotic local search algorithm, and further optimize the network weights; according to the prior knowledge, using L1 regularization, the objective function of the regularization algorithm to search, to avoid potential solutions, ensure the generalization ability of network model. A hybrid nonlinear system is identified and simulated. The simulation results show that the optimized neural network has high recognition precision and good generalization ability.

    參考文獻
    相似文獻
    引證文獻
引用本文

朱宜家,陳國光,范旭,楊智杰,白敦卓.文化基因算法優(yōu)化PID神經(jīng)網(wǎng)絡(luò )系統辨識計算機測量與控制[J].,2018,26(3):66-69.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2017-12-01
  • 最后修改日期:2017-12-28
  • 錄用日期:2018-01-02
  • 在線(xiàn)發(fā)布日期: 2018-03-29
  • 出版日期:
文章二維碼
昭通市| 伊宁县| 龙泉市| 延寿县| 辉县市| 杨浦区| 墨江| 屯昌县| 柘城县| 舞阳县| 防城港市| 扎囊县| 思茅市| 郯城县| 肥乡县| 襄汾县| 万盛区| 河北区| 舟山市| 萝北县| 遂昌县| 通州市| 海晏县| 桂林市| 长岛县| 连南| 株洲市| 洪洞县| 通山县| 中卫市| 上虞市| 清新县| 兰州市| 林州市| 石门县| 涪陵区| 绥江县| 柘荣县| 吴旗县| 双城市| 汉源县|