国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于KPCA-DFNN海洋微生物發(fā)酵過(guò)程軟測量建模
DOI:
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

江蘇高校優(yōu)勢學(xué)科建設工程資助項目(PAPD);“十二五”國家 863 計劃重點(diǎn)科技項目(2011AA09070301);江蘇省自然科學(xué)基金面上項目(BK20151345);江蘇高校品牌專(zhuān)業(yè)建設工程資助項目(PPZY2015A088)


Soft Sensor Modeling for the marine microbe fermentation process based on KPCA and DFNN
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對海洋微生物發(fā)酵過(guò)程中關(guān)鍵生物參量(基質(zhì)濃度、菌體濃度、產(chǎn)物濃度等)在線(xiàn)測量困難,離線(xiàn)化驗滯后大,難以實(shí)現實(shí)時(shí)控制的問(wèn)題,提出了一種基于核主元分析(KPCA)與動(dòng)態(tài)模糊神經(jīng)網(wǎng)絡(luò )(DFNN)相結合的軟測量方法。以典型的海洋微生物-海洋蛋白酶發(fā)酵過(guò)程為例,通過(guò)KPCA提取輸入數據空間中的非線(xiàn)性主元,將提取的主元作為DFNN的輸入,基質(zhì)濃度、菌體濃度、相對酶活作為DFNN的輸出,建立了基于KPCA-DFNN的海洋蛋白酶發(fā)酵過(guò)程生物參量軟測量模型。仿真結果表明,KPCA-DFNN模型比DFNN和PCA-DFNN建模的測量精度高,跟蹤性能強,能很好地滿(mǎn)足發(fā)酵過(guò)程中生物參量的測量要求。

    Abstract:

    To overcome the difficulty that crucial biological variables ( such as substrate concentration,biomass concentration,product concentration,etc.) cannot be effectively controlled during the marine microbe fermentation process due to a lack of real-time on-line instrumentation,a soft sensor method is proposed by combining the Kernel Principal Component Analysis ( KPCA) with the Dynamic Fuzzy Neural Network (DFNN).The typical marine microbe fermentation process (the marine protease fermentation process) was taken as an example. Firstly, KPCA was applied to choose the nonlinear principal component of the model input data space. And then its result was taken as input of the DFNN, substrate concentration , biomass concentration and relative enzyme activity were taken as output of the DFNN. Finally, the soft sensor model of biological parameters based on KPCA-DFNN is established in the marine protease fermentation process. Simulation results indicate that the KPCA-DFNN model has a higher accuracy, better tracking performance when compared with DFNN model and the PCA-DFNN model. Therefore, the proposed method can satisfy the requirements of on-line measurement of biological variables in the marine microbe fermentation process.

    參考文獻
    相似文獻
    引證文獻
引用本文

孫麗娜,黃永紅,蔣星紅,馮培燕.基于KPCA-DFNN海洋微生物發(fā)酵過(guò)程軟測量建模計算機測量與控制[J].,2018,26(7):41-43.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2017-11-13
  • 最后修改日期:2017-12-11
  • 錄用日期:2017-12-11
  • 在線(xiàn)發(fā)布日期: 2018-07-26
  • 出版日期:
文章二維碼
红桥区| 兴海县| 从江县| 阜新市| 凉城县| 达尔| 宿州市| 威信县| 濉溪县| 义马市| 湘潭县| 平凉市| 读书| 琼结县| 衡南县| 肇源县| 宣化县| 庐江县| 重庆市| 泰和县| 嘉荫县| 孙吴县| 吉木乃县| 葵青区| 且末县| 和静县| 毕节市| 青田县| 金平| 东平县| 芒康县| 宁都县| 绵阳市| 新兴县| 奎屯市| 瓮安县| 桂东县| 昌吉市| 寿宁县| 巴中市| 临安市|