国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于樣本優(yōu)化選取的支持向量機竊電辨識方法
DOI:
CSTR:
作者:
作者單位:

國網(wǎng)浙江長(cháng)興縣供電有限公司,國網(wǎng)浙江長(cháng)興縣供電有限公司,國網(wǎng)浙江長(cháng)興縣供電有限公司,中國計量大學(xué),中國計量大學(xué)

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

浙江省自然科學(xué)基金青年科學(xué)基金項目


electricity theft identification using support vector machine based on sample optimization selection
Author:
Affiliation:

State Grid Zhejiang Changxing Power Supply Company Limited,State Grid Zhejiang Changxing Power Supply Company Limited,State Grid Zhejiang Changxing Power Supply Company Limited,,China Jiliang University

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    目前竊電行為普遍存在,如何提高用戶(hù)用電系統的竊電辨識能力是電力公司一直關(guān)注的熱點(diǎn)問(wèn)題。隨著(zhù)智能電表在各地區的普及,數據挖掘等大數據分析技術(shù)在用電數據處理上的應用越來(lái)越受到重視。針對電力公司亟待解決的反竊電問(wèn)題,在研究支持向量機原理和分析用電數據特性的基礎上,將One-class SVM算法引入到疑似竊電判斷當中,提出了一種將電量波動(dòng)特征和One-class SVM結合的竊電辨識模型。首先提出改進(jìn)的電量數據波動(dòng)系數來(lái)表征電量波動(dòng),然后設計了基于One-class SVM竊電辨識方案。提出一種以電量波動(dòng)系數作為指標選取訓練樣本的方法,訓練得到相應分類(lèi)模型,通過(guò)該模型分析用電數據從而辨別出是否存在竊電行為。算法驗證結果表明該方法能提高竊電辨識的準確率和效率,具備一定的實(shí)用性。

    Abstract:

    Nowadays, Energy theft is widespread, how to improve the electricity theft identification of the user's power system has been concerned about the hot issues by the power company. With the popularity of smart meters in all regions, data mining and other large data analysis technology in the application of electricity data processing has been receiving increasing attention. Focused on the problem of anti-stealing electricity which power companies are concerned, and based on the study of the principle of support vector machine and the analysis of the characteristics of electricity data, the One-class SVM algorithm is introduced into the judgment of suspected energy theft, and an electricity theft identification model combining power fluctuation feature and One-class SVM is proposed. This paper first proposes an improved power data fluctuation coefficient to characterize the fluctuation of electricity, and then designs an electricity theft identification scheme based on One-class SVM. This method combines the fluctuation characteristics of electricity to select the load data samples, and constructs the detection model of energy theft based on the electricity data, then identifies whether there is electricity theft behavior. Experiments show that this method can improve the accuracy and efficiency of electricity theft identification and it has certain practicability.

    參考文獻
    相似文獻
    引證文獻
引用本文

盧峰,丁學(xué)峰,尹小明,陳洪濤,王穎.基于樣本優(yōu)化選取的支持向量機竊電辨識方法計算機測量與控制[J].,2018,26(6):223-226.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2017-10-28
  • 最后修改日期:2017-11-16
  • 錄用日期:2017-11-20
  • 在線(xiàn)發(fā)布日期: 2018-07-02
  • 出版日期:
文章二維碼
炎陵县| 区。| 会泽县| 米泉市| 新营市| 凌源市| 定西市| 衢州市| 神池县| 渝北区| 故城县| 社旗县| 项城市| 阳春市| 丰都县| 宜阳县| 西贡区| 汤原县| 武汉市| 贡嘎县| 石台县| 永春县| 顺昌县| 肥城市| 紫阳县| 英吉沙县| 灵武市| 石门县| 张家口市| 武邑县| 青川县| 观塘区| 驻马店市| 鲁甸县| 长春市| 淮北市| 建湖县| 融水| 白城市| 隆化县| 宜都市|