国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

融合全局和局部特征并基于神經(jīng)網(wǎng)絡(luò )的表情識別
DOI:
CSTR:
作者:
作者單位:

上海工程技術(shù)大學(xué) 機械工程學(xué)院,

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:


Facial Expression Recognition of Fusion of Global and Local Features Based on Neural Networks
Author:
Affiliation:

Shanghai University of Engineering Science,

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    在表情中含有最多特征信息的是面部眉毛、眼睛和嘴巴這三個(gè)區域,為充分利用這些特征,減少圖像中無(wú)用信息在識別過(guò)程中對計算機內存的占用,提高人臉表情識別系統的準確率和速度,首先采用haar 和 adaboost人臉檢測算法,對圖像中的人臉進(jìn)行識別,獲得人臉圖像并提取眉毛、眼睛和嘴巴,生成局部(眉毛、眼睛、嘴巴)二值化圖,利用PCA方法對人臉圖像降維,降維后的全局和局部灰度特征值組成一個(gè)列向量。樣本由表情數據庫產(chǎn)生,經(jīng)過(guò)神經(jīng)網(wǎng)絡(luò )樣本訓練后,進(jìn)行表情識別。結果表明,該系統對人臉表情識別速度明顯快于Gabor 小波算法;識別的準確率高于單獨使用PCA算法和神經(jīng)網(wǎng)絡(luò )算法;消耗內存比用Gabor 小波算法少,運行較流暢。得出結論:因為提取出包含表情特征信息集中區的眉毛、眼睛和嘴巴,盡可能地多保留了這些局部特征信息,因而提高了表情識別準確率,同時(shí),采用PCA方法對原始圖像進(jìn)行降維處理,有效的減少了信息冗余。

    Abstract:

    There is the most characteristic information in the regions of the eyebrows, eyes and mouth about facial expressions. In order to make full use of these features, reduce the amount of unavailable information in the image and occupation of the memory during the recognition process and improve the accuracy and speed of facial expression recognition. Firstly, Haar and AdaBoost face detection algorithms are used to recognize the human face in the image, get face images, and extract eyebrows, eyes and mouth. Generate the binaryzation of image of the eyebrow, eye and mouth. Getting the image of descending dimension by PCA algorithm and a column vector was composed of image of binaryzation and image of descending dimension. The samples are generated by an expression database and trained by neural network samples for facial expression recognition. The results show that the speed of facial expression recognition is faster than that of Gabor algorithm; The recognition accuracy is higher than that using the PCA algorithm and the neural network algorithm alone;The consumption of memory is less than that of the Gabor algorithm and the operation is smoother. The conclusion is that the local feature information is preserved as much as possible, because the eyebrows, eyes and mouths which contain the facial feature information are extracted, the accuracy of facial expression recognition is improved. At the same time, the PCA algorithm is used for the image of descending dimension and reduce the redundancy of information effectively.

    參考文獻
    相似文獻
    引證文獻
引用本文

吳晶晶,程武山.融合全局和局部特征并基于神經(jīng)網(wǎng)絡(luò )的表情識別計算機測量與控制[J].,2018,26(6):172-175.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2017-10-10
  • 最后修改日期:2017-10-31
  • 錄用日期:2017-11-01
  • 在線(xiàn)發(fā)布日期: 2018-07-02
  • 出版日期:
文章二維碼
德格县| 左权县| 长春市| 来安县| 大丰市| 东城区| 平邑县| 资溪县| 弥渡县| 苗栗县| 新民市| 十堰市| 新竹市| 南宁市| 阳谷县| 乡宁县| 宁陕县| 原阳县| 河东区| 洪江市| 噶尔县| 泰顺县| 翁源县| 荆门市| 兴仁县| 东兴市| 广东省| 彩票| 滕州市| 长白| 五河县| 湾仔区| 乌兰察布市| 新巴尔虎右旗| 子洲县| 怀来县| 镇沅| 红原县| 巍山| 平泉县| 怀化市|