国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于模糊神經(jīng)網(wǎng)絡(luò )的短時(shí)交通流預測方法研究
CSTR:
作者:
作者單位:

(江西科技師范大學(xué) 數學(xué)與計算機科學(xué)學(xué)院,南昌 330038)

作者簡(jiǎn)介:

程山英(1979-),女,江西南昌人,碩士,講師,主要從事智能交通方向的研究。[FQ)]

通訊作者:

中圖分類(lèi)號:

基金項目:

江西省科技計劃指導性項目(2015ZBAB201007);江西科技師范大學(xué)校級科研重點(diǎn)項目(2016XJZD006); 江西省高校人文社會(huì )科學(xué)研究項目(TQ1505)。


Short-term Traffic Flow Prediction Method Based on Fuzzy Neural Network Research
Author:
Affiliation:

(College of Math and Computer of the Jiangxi Science & Technology Normal University, Nanchang 330038,China)

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為滿(mǎn)足交通控制和誘導系統的實(shí)時(shí)性需求,減少交通擁擠狀況,降低交通事故突發(fā)頻率,需要對短時(shí)交通流進(jìn)行預測;當前的短時(shí)交通流預測方法是采用K-近鄰的非參數回歸對其進(jìn)行預測,預測過(guò)程中沒(méi)有將預測模型中關(guān)鍵因素對交通流的影響進(jìn)行詳細的說(shuō)明,導致預測結果不準確,存在短時(shí)交通流預測誤差較大的問(wèn)題;為此,提出一種基于模糊神經(jīng)網(wǎng)絡(luò )的短時(shí)交通流預測方法;該方法首先以歷史短時(shí)交通流數據樣本序列為基礎,將提取的關(guān)聯(lián)維數作為短時(shí)交通流的混沌特征量,然后以該特征量為依據,對短時(shí)交通流數據進(jìn)行聚類(lèi),使相同的短時(shí)交通流聚合類(lèi)樣本比不同的交通流聚合類(lèi)樣本更為貼近,采用高斯過(guò)程回歸對短時(shí)交通流預測模型進(jìn)行建設,建設過(guò)程中利用差分方法對短時(shí)交通流預測序列進(jìn)行平穩化操作之后,對短時(shí)交通流預測模型進(jìn)行訓練,將GPR模型引入至短時(shí)交通流預測過(guò)程中,得到交通流預測方差估計值,并確定交通流預測值置信區間,由此實(shí)現短時(shí)交通流的預測;由此實(shí)現短時(shí)交通流的預測;實(shí)驗結果證明,所提方法可以準確地預測交通運輸系統的實(shí)時(shí)狀況,為車(chē)輛行駛的最佳路線(xiàn)進(jìn)行了有效引導,減少了自然影響方面和人為因素對短時(shí)交通流預測結果的干擾,為交通部門(mén)對交通路況的控制管理提供了依據。

    Abstract:

    In order to satisfy the real time demand of traffic control and guidance system, reduce the occurrence of traffic congestion, reduce the frequency of traffic accident emergency, need to forecast the short-term traffic flow. Current short-term traffic flow prediction method is using K - nearest nonparametric regression to forecast and predict the process of no will be key factors in the prediction model of traffic flow in detail, the influence of lead to inaccurate prediction results, the problems of short-term traffic flow prediction error is bigger. For this, put forward a kind of short-term traffic flow prediction method based on fuzzy neural network. This method firstly on the basis of the history of short-term traffic flow data sample series, the extracted correlation dimension as a short-term traffic flow of the chaos characteristics, and then based on the characteristics, the clustering of the short-term traffic flow data and make the same short-term traffic flow aggregation class samples than the aggregation of different traffic flow class samples more press close to, by using the Gaussian process regression of short-term traffic flow forecasting model, using the finite difference method in the process of construction of short-term traffic flow forecasting sequences with smooth operation, after training for short-term traffic flow prediction model, introducing the Gaussian model to short-term traffic flow prediction in the process, get the traffic flow forecasting variance, and traffic flow prediction confidence interval were determined, thus realizing short-term traffic flow prediction. The realization of short-term traffic flow prediction. The experimental results show that the proposed method can accurately predict the transportation system of the real-time condition, the best way for vehicle is the effective guidance, reduces the impact on natural and human factors interference, the result of the short-term traffic flow prediction for the traffic department to provide a basis for the control of road traffic management.

    參考文獻
    相似文獻
    引證文獻
引用本文

程山英.基于模糊神經(jīng)網(wǎng)絡(luò )的短時(shí)交通流預測方法研究計算機測量與控制[J].,2017,25(8):155-158.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2017-04-21
  • 最后修改日期:2017-05-09
  • 錄用日期:
  • 在線(xiàn)發(fā)布日期: 2017-09-08
  • 出版日期:
文章二維碼
云和县| 广丰县| 潼南县| 犍为县| 乐山市| 龙岩市| 博客| 竹山县| 曲阳县| 安福县| 中牟县| 阿瓦提县| 定远县| 晋江市| 青州市| 黄石市| 中牟县| 浦江县| 威宁| 洛宁县| 齐河县| 青海省| 乌拉特后旗| 六枝特区| 阿克苏市| 九龙城区| 新竹县| 博野县| 兴义市| 江油市| 黑龙江省| 琼中| 文成县| 阿坝县| 绥中县| 东山县| 利川市| 宁乡县| 镇原县| 拜泉县| 封丘县|