国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于增強GA-BP神經(jīng)網(wǎng)絡(luò )的軟件錯誤定位方法
CSTR:
作者:
作者單位:

(首都師范大學(xué) 信息工程學(xué)院,北京 100048)

作者簡(jiǎn)介:

張 蓓(1992-)女,碩士研究生,主要從事軟件測試方向的研究。 張樹(shù)東(1969-)男,教授,博士,主要從事計算機網(wǎng)絡(luò )和分布式計算等方向的研究。 [FQ)]

通訊作者:

中圖分類(lèi)號:

基金項目:


Fault Localization Method Based on Enhanced GA-BP Neural Network
Author:
Affiliation:

(College of Information Engineering, Capital Normal University, Beijing 100048, China)

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    在軟件開(kāi)發(fā)和后期維護的過(guò)程中,進(jìn)行軟件調試來(lái)定位錯誤并修正錯誤是其中最復雜且成本最大的一部分;文章針對現有基于神經(jīng)網(wǎng)絡(luò )的軟件錯誤定位方法中的權值和閾值設定不方便、魯棒性差等問(wèn)題,結合正交實(shí)驗設計思想和遺傳算法(Genetic Algorithm),提出了一種基于增強遺傳BP神經(jīng)網(wǎng)絡(luò )的軟件錯誤定位方法;并將其同基于GA-BP神經(jīng)網(wǎng)絡(luò )的和基于BP神經(jīng)網(wǎng)絡(luò )的定位方法都在MATLAB上進(jìn)行了實(shí)驗,實(shí)驗數據來(lái)源西門(mén)子測試集,從結果上看,基于增強GA-BP神經(jīng)網(wǎng)絡(luò )的軟件錯誤定位方法在定位錯誤的效率和精確度上都有一些進(jìn)步。

    Abstract:

    In the process of software development and maintenance, software debugging is the most complicated and the most expensive part. During the period of traditional software debugging, programmers have to locate mistakes by browsing codes, this is a time-consuming and laborious work. There has been a great need for fault localization techniques that can help guide programmers to the locations of faults. In recent years, automated software fault localization technology has attracted many scholars’ attention, various approaches have been proposed. In this paper, a technique named EGA-BPN is proposed which can propose suspicious locations for fault localization automatically without requiring any prior information of program structure or semantics. EGA-BPN is a software fault localization method based on enhanced Genetic Algorithm-Back Propagation neural network. Firstly, through processing running traces of the program, covering information of test cases are converted as the training samples of neural network; secondly, the data are input into neural network in training orderly, the initial weights of neural network are computed by GA, then test matrix is calculated by the neural network to count the suspiciousness of each statement, and using orthogonal experimental design to adjust the parameters of neural networks; finally, the fault is located at the statements with higher suspicious value. Through experiment on the proposed method and GA-BPN and BPN were compared, the results show that the enhanced GA-BP neural network-based fault localization technology has certain validity.

    參考文獻
    相似文獻
    引證文獻
引用本文

張蓓,張樹(shù)東.基于增強GA-BP神經(jīng)網(wǎng)絡(luò )的軟件錯誤定位方法計算機測量與控制[J].,2017,25(3):123-125, 129.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2016-01-18
  • 最后修改日期:2016-02-26
  • 錄用日期:
  • 在線(xiàn)發(fā)布日期: 2017-05-31
  • 出版日期:
文章二維碼
昭通市| 新龙县| 迁西县| 青田县| 四会市| 闽侯县| 湾仔区| 黎川县| 三原县| 汪清县| 政和县| 苏尼特右旗| 霍山县| 隆尧县| 承德县| 清镇市| 淮北市| 调兵山市| 南部县| 浠水县| 外汇| 静乐县| 秦皇岛市| 托克逊县| 绥江县| 莱西市| 石楼县| 吉木萨尔县| 柞水县| 宁安市| 佛山市| 海丰县| 称多县| 定南县| 重庆市| 阳东县| 水富县| 万载县| 老河口市| 青河县| 丰县|