国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

一種混合入侵檢測模型
DOI:
CSTR:
作者:
作者單位:

中山職業(yè)技術(shù)學(xué)院,廣東科學(xué)技術(shù)職業(yè)學(xué)院 計算機工程技術(shù)學(xué)院,

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

TP393

基金項目:

國家自然科學(xué)基金項目(61170193);廣東省自然科學(xué)基金項目(S2013010013432);中山市社會(huì )公益科技研究項目(2016B2142)


ONE MIXED INTRUSION DETECTION MODEL
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為了提高入侵檢測模型的準確率,提出一種基于K-均值算法、樸素貝葉斯分類(lèi)算法和反向傳播神經(jīng)網(wǎng)絡(luò )的混合入侵檢測模型。首先,采用基于分區、無(wú)監督式聚類(lèi)分析的K-均值算法進(jìn)行數據的聚類(lèi)處理,得到易于被機器處理和學(xué)習的數據集。為了進(jìn)一步獲取必要的數據屬性,將聚類(lèi)處理的結果輸入到貝葉斯分類(lèi)器進(jìn)行分類(lèi)。然后,具有較短學(xué)習周期的反向傳播神經(jīng)網(wǎng)絡(luò )負責訓練數據分類(lèi)樣本。最后,基于KDD CUP99數據集,對混合入侵檢測模型進(jìn)行了仿真實(shí)驗,實(shí)驗結果表明,通過(guò)混合入侵檢測模型,DoS、U2R、R2L和Probe等入侵數據被精準地檢測出。相比其它入侵檢測模型,混合入侵檢測模型取得了較高的準確率和召回率,以及較低的誤報率,具有一定的實(shí)用價(jià)值。

    Abstract:

    In order to improve the accuracy of intrusion detection model, one mixed intrusion detection model was proposed in this paper, which combined with K-means algorithm, Naive Bayes algorithm and Back-Propagation neural network. In this work, as a partition-based, unsupervised cluster analysis method, K-means method was firstly applied. The data sets obtained were easily processed and learned by arbitrary machine learning algorithm in this form of clustering. Then, Bayes classifier processes these outcomes as a probability model. In this step, the fit and essential data attributes were achieved. Next, filter data samples learning was implemented by Back Propagation Neural Network, which was able to learn the patterns with less number of training cycles. Finally, the mixed intrusion detection model was validated by experiments on KDD CUP99’s datasets. Attacks as DoS, U2R, R2L and Probe were detected via the mixed intrusion detection model. The simulation experiments results show that the mixed intrusion detection model improved the accuracy and error rate compared with other models as well as the recall rate. Furthermore, this mixed intrusion detection model also demonstrates some value of practical application.

    參考文獻
    相似文獻
    引證文獻
引用本文

梁本來(lái),楊忠明,蔡昭權.一種混合入侵檢測模型計算機測量與控制[J].,2017,25(4).

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2017-01-24
  • 最后修改日期:2017-02-19
  • 錄用日期:2017-02-21
  • 在線(xiàn)發(fā)布日期: 2017-07-18
  • 出版日期:
文章二維碼
濉溪县| 河池市| 衡阳市| 社旗县| 三门峡市| 开阳县| 额尔古纳市| 怀仁县| 临武县| 社旗县| 平阴县| 南溪县| 乐安县| 沽源县| 恭城| 福建省| 泰兴市| 图片| 正阳县| 孟州市| 惠水县| 仪陇县| 洛阳市| 尉氏县| 烟台市| 柳河县| 前郭尔| 色达县| 彭泽县| 阿坝| 绥滨县| 凌云县| 马龙县| 昌平区| 多伦县| 即墨市| 新津县| 西乌珠穆沁旗| 安徽省| 九龙坡区| 五家渠市|