国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于遺傳-模擬退火的蟻群算法求解TSP問(wèn)題
DOI:
CSTR:
作者:
作者單位:

(南京工業(yè)大學(xué) 電氣工程與控制科學(xué)學(xué)院,南京 211800)

作者簡(jiǎn)介:

徐 勝(1990-),男,江蘇常熟人,研究生,主要從事建筑智能化技術(shù)方向的研究。 馬小軍(1956-),男,江蘇南京人,教授,主要從事建筑智能化技術(shù),PLC,嵌入式技術(shù)方向的研究。[FQ)]

通訊作者:

中圖分類(lèi)號:

基金項目:

江蘇省普通高校研究生科研創(chuàng )新計劃項目(SJLX_0334)。


Genetic-simulated Annealing-based Ant Colony Algorithm for Traveling Salesman Problem
Author:
Affiliation:

(College of Electrical Engineering and Control Science,Nanjing Tech University,Nanjing 211800,China)

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    傳統的蟻群算法具有收斂性好、魯棒性強等優(yōu)點(diǎn),但在解決旅行商(TSP)問(wèn)題方面存在收斂時(shí)間長(cháng),容易出現停滯等問(wèn)題;為了提高傳統蟻群算法的解的質(zhì)量,本文提出了基于遺傳-模擬退火的蟻群算法(G-SAACO),將遺傳算法和模擬退火算法引入蟻群算法中;其方法是在傳統蟻群算法中引入遺傳算法的變異與交叉策略來(lái)得到候選解,增加解的多樣性;同時(shí)引進(jìn)模擬退火算法機制,使得在高溫時(shí)以較高概率選擇候選集中比較差的解加入最新集,溫度控制上加入了回火機制,進(jìn)一步提高解的質(zhì)量;為了檢驗改進(jìn)的蟻群算法,隨機選用了TSPLIB中的部分城市進(jìn)行仿真,結果與傳統蟻群算法、模擬退火蟻群算法、遺傳蟻群算法相比,算法具有較強的發(fā)現較好解的能力,同時(shí)增強了平均值的穩定性。

    Abstract:

    The traditional ant colony algorithm has the advantages of good convergence and robustness, but has a long convergence time in solving the problem of TSP. In order to improve the quality of the solution of the traditional ant colony algorithm, G-SAACO is proposed,the genetic algorithm and simulated annealing algorithm are introduced into the ant colony algorithm.. The idea of the algorithm was to introduce the variation and crossover strategy of genetic algorithm into the traditional ant colony algorithm to get the candidate solutions, which increased the diversity of the solution. And introduction of simulated annealing algorithm mechanism made the algorithm have higher probability of selecting poor solutions in a candidate set into the latest set. Besides,In the mechanism of controlling the temperature, the quality of the solutions was improved through backfire strategy. In order to test the improved ant colony algorithm, randomly selected parts of the city of the TSPLIB to simulate.Compared with the standard GA,simulated annealing algorithm and the traditional ant colony algorithm for traveling salesman problem(TSP).The results show that the algorithm has a strong ability to find good solutions, and the stability of the average value is enhanced.

    參考文獻
    相似文獻
    引證文獻
引用本文

徐勝,馬小軍,錢(qián)海,王震宇.基于遺傳-模擬退火的蟻群算法求解TSP問(wèn)題計算機測量與控制[J].,2016,24(3):143-144.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2015-08-28
  • 最后修改日期:2015-11-16
  • 錄用日期:
  • 在線(xiàn)發(fā)布日期: 2016-07-27
  • 出版日期:
文章二維碼
章丘市| 甘南县| 绥芬河市| 营口市| 博兴县| 连城县| 巫山县| 聂拉木县| 西乡县| 南郑县| 昌宁县| 陕西省| 阿瓦提县| 徐汇区| 元朗区| 达州市| 荣昌县| 衡水市| 永定县| 漳州市| 玉山县| 常德市| 九寨沟县| 嵩明县| 额敏县| 迁安市| 襄汾县| 洛阳市| 晋城| 岑溪市| 翁牛特旗| 唐山市| 凯里市| 辽源市| 宁海县| 辰溪县| 靖边县| 石阡县| 通化县| 日喀则市| 左云县|