国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

粒子群優(yōu)化神經(jīng)網(wǎng)絡(luò )的交通事件檢測算法研究
DOI:
CSTR:
作者:
作者單位:

(1.深圳職業(yè)技術(shù)學(xué)院,廣東 深圳 518055;2.中國民航大學(xué),天津 300300; ;3.哈爾濱工業(yè)大學(xué)深圳研究生院,廣東 深圳 518055)

作者簡(jiǎn)介:

向懷坤(1971-),男,四川南部人,副教授,博士,主要從事城市交通智能化應用研究。[FQ)]

通訊作者:

中圖分類(lèi)號:

基金項目:

國家自然科學(xué)基金項目(71473060)。


Research on Traffic Incident Detection Algorithm Based on Particle Swarm Optimizer Neural Network
Author:
Affiliation:

(1.Shenzhen Polytechnic, Shenzhen 518055, China;2.Civil Aviation University of China, Tianjin 300300,China; ;3.Shenzhen Graduate School, Harbin Institute of Technology,Shenzhen 518055, China)

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為減少交通事件引起的交通延誤,提出一種基于粒子群優(yōu)化神經(jīng)網(wǎng)絡(luò )的交通事件檢測算法;首先,利用車(chē)載激光測距儀和GPS設備作為實(shí)驗平臺,采集了反映路段車(chē)輛占有率及車(chē)輛運行速度特征的交通參數;其次,利用粒子群(PSO)算法訓練隨機產(chǎn)生的初始化數據,優(yōu)化BP神經(jīng)網(wǎng)絡(luò )連接權值和閾值;最后,將PSO優(yōu)化后的BP神經(jīng)網(wǎng)絡(luò )作為分類(lèi)器進(jìn)行交通事件的自動(dòng)分類(lèi)和檢測;試驗中比較了PSO神經(jīng)網(wǎng)絡(luò )算法、BP神經(jīng)網(wǎng)絡(luò )算法和經(jīng)典算法對交通事件的檢測效果,PSO神經(jīng)網(wǎng)絡(luò )算法在事件檢測率(DR)、平均檢測時(shí)間(MTTD)方面均優(yōu)于其他目標算法;結果顯示,粒子群優(yōu)化的神經(jīng)網(wǎng)絡(luò )算法用于交通事件檢測提高了檢測性能。

    Abstract:

    A new method was proposed for traffic incident detection based on particle swarm optimizer neural network. At first, the vehicular laser rangefinder and GPS equipment were used as the experimental platform, which collected the traffic parameters including the road vehicle occupancy rate and the vehicle running speed;Secondly,the particle swarm optimizer(PSO) was used to train the random initial data to optimize the connection weights and thresholds of the back-propagation(BP) neural network;Finally The BP neural network after optimization was used to classify traffic incidents automatically. In the detection experiment, PSO neural network, BP neural network and traditional algorithms were compared in the same testing environment. PSO neural network was superior to the other objective algorithm in incident detection rate(DR) and mean time to detection(MTTD).Results showed that particle swarm optimizer neural network brought a promising improvement in the detection capability for traffic incident detection.

    參考文獻
    相似文獻
    引證文獻
引用本文

向懷坤,李偉龍,謝秉磊.粒子群優(yōu)化神經(jīng)網(wǎng)絡(luò )的交通事件檢測算法研究計算機測量與控制[J].,2016,24(2):171-174.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2015-08-05
  • 最后修改日期:2015-09-07
  • 錄用日期:
  • 在線(xiàn)發(fā)布日期: 2016-07-27
  • 出版日期:
文章二維碼
长垣县| 农安县| 蒙城县| 揭阳市| 新化县| 南开区| 文水县| 汉源县| 沽源县| 黑水县| 屏东县| 台南县| 新宁县| 成都市| 黔江区| 凤台县| 屏东县| 六安市| 汶上县| 麦盖提县| 平顺县| 五峰| 阳原县| 广南县| 桐梓县| 道孚县| 唐河县| 长子县| 千阳县| 荆门市| 凉城县| 佛冈县| 永登县| 永胜县| 红河县| 个旧市| 宁陕县| 竹山县| 嘉义市| 南召县| 乌审旗|