国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于Hadoop的GA-BP網(wǎng)絡(luò )在山洪預測中的研究
DOI:
CSTR:
作者:
作者單位:

(四川大學(xué) 電子信息學(xué)院,成都 610065)

作者簡(jiǎn)介:

孫丹丹(1992-),女,山東棗莊人,碩士研究生,主要從事云計算、智能控制方向的研究。 [FQ)]

通訊作者:

中圖分類(lèi)號:

基金項目:


Study of Hadoop-based GA-BP Network in the Flash Flood Forecasting
Author:
Affiliation:

(College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China)

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    研究了山洪災害監測預警系統中雨情數據的分布式存儲和分布式預測;針對采集到的水文數據急劇增長(cháng)和對預測精度和預報時(shí)效的要求不斷提高,分別應用Hadoop分布式文件系統對數據進(jìn)行分布式存儲和 MapReduce框架結合遺傳算法優(yōu)化神經(jīng)網(wǎng)絡(luò )的權值和閾值進(jìn)行分布式預測;采用基于BP神經(jīng)網(wǎng)絡(luò )的多因子山洪災害雨量預測模型,結合遺傳算法能夠實(shí)現全局優(yōu)化特點(diǎn)來(lái)優(yōu)化神經(jīng)網(wǎng)絡(luò )的權值和閾值,并在數據并行處理過(guò)程中,采用了批處理和MapReduce工作流的方式,以誤差和準確率來(lái)評估預測模型,解決了神經(jīng)網(wǎng)絡(luò )在處理海量數據時(shí)訓練時(shí)間長(cháng)等問(wèn)題;實(shí)驗表明,該方法可以在不影響準確度的前提下,大大縮短運行時(shí)間,提高預測效率。

    Abstract:

    Distributed storage and Distributed prediction method for flash flood forecasting disaster forecasting system of Rainfall data is researched. Focused on the rapid growth of the collected Hydrological data and the demands for prediction accuracy and timeliness of forecasts is increasing, respectively used Hadoop distributed file system to store data and use MapReduce framework and the genetic algorithm to optimize the number of hidden layer nodes and the weights as well as the thresholds of the network to predict data. Based on multi-factor flash flood disaster rainfall BP neural network prediction model, combining the characteristics of genetic algorithm can achieve global optimization to optimize the number of hidden layer nodes and the weights as well as the thresholds of the network,and in the procedure of data parallel processing adopted the way of batch mode and MapReduce workflow, and used the error and the accuracy to evaluate the prediction model,which solve the problem of network training time when the neural network in dealing with mass data. Experiments show that this method can greatly reduce the running time without affecting the accuracy, and improve prediction efficiency.

    參考文獻
    相似文獻
    引證文獻
引用本文

孫丹丹,寧芊.基于Hadoop的GA-BP網(wǎng)絡(luò )在山洪預測中的研究計算機測量與控制[J].,2016,24(1):187-190.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2015-07-03
  • 最后修改日期:2015-08-25
  • 錄用日期:
  • 在線(xiàn)發(fā)布日期: 2016-07-26
  • 出版日期:
文章二維碼
柳林县| 肃北| 吉隆县| 城口县| 依兰县| 景洪市| 三明市| 怀集县| 浪卡子县| 奇台县| 汾西县| 南开区| 门源| 开平市| 从江县| 绥化市| 西贡区| 高安市| 安宁市| 米脂县| 平湖市| 辉南县| 芮城县| 永年县| 白城市| 鹤壁市| 峡江县| 扎赉特旗| 金塔县| 长乐市| 大足县| 二连浩特市| 莱州市| 九龙县| 仲巴县| 平定县| 成安县| 贡觉县| 武安市| 隆安县| 柞水县|