国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

純電動(dòng)汽車(chē)磷酸鐵鋰電池組的建模及優(yōu)化
DOI:
CSTR:
作者:
作者單位:

(廣西大學(xué) 電氣工程學(xué)院,南寧 530004)

作者簡(jiǎn)介:

宋紹劍(1970),男,廣西象州人,教授,碩士生導師,主要從事新能源轉換與控制、復雜系統建模與優(yōu)化方向的研究。[FQ)]

通訊作者:

中圖分類(lèi)號:

基金項目:

國家自然科學(xué)基金項目(61364007);國家自然科學(xué)基金重點(diǎn)項目(610034002) 。 


Modeling and Optimization of Pure Electric Vehicle's LiFePO4 Battery Pack
Author:
Affiliation:

(School of Electrical Engineering,Guangxi University,Nanning 530004, China)

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    鑒于傳統神經(jīng)網(wǎng)絡(luò )和支持向量機機理復雜、計算量大的缺陷,很難實(shí)時(shí)跟蹤磷酸鐵鋰電池組復雜快速的內部反應,影響電池荷電狀態(tài)的估算精度,提出應用一種簡(jiǎn)單、有效的極限學(xué)習機對一額定容量為100 Ah、額定電壓為72 V的純電動(dòng)汽車(chē)磷酸鐵鋰電池組建模,并分別與BP神經(jīng)網(wǎng)絡(luò )、RBF神經(jīng)網(wǎng)絡(luò )、支持向量機進(jìn)行對比;隨后,以學(xué)習時(shí)間和泛化性能為優(yōu)化目標,應用粒子群方法尋找最佳隱層節點(diǎn)個(gè)數;結果表明,基于極限學(xué)習機的磷酸鐵鋰電池組模型的學(xué)習時(shí)間、泛化性能優(yōu)于BP神經(jīng)網(wǎng)絡(luò )、RBF神經(jīng)網(wǎng)絡(luò )、支持向量機;隱層節點(diǎn)優(yōu)化后,模型的學(xué)習時(shí)間和泛化性能達到最優(yōu)。

    Abstract:

    The traditional neural networks and support vector machine have the weakness of complex mechanism and large amount of computation. It is difficult to track the complex and fast inner reaction of LiFePO4 battery pack in real time, affecting the estimation accuracy of the battery state of charge. A simple and effective extreme learning machine is proposed for the modeling of pure electric vehicle’s LiFePO4 battery pack,whose rated capacity is 100 Ah and nominal voltage is 72 V, then compared with the back-propagation neural networks-based, radical basis function neural networks-based and support vector machines-based. Subsequently, taking the learning time and generalization performance as the optimization goal and using the particle swarm to find the optimal hidden node. The results show that the model of LiFePO4 battery pack based on extreme learning machine has shorter learning time and higher generalization performance compared with the model based on BP neural networks, RBF neural networks and support vector machines. After optimization of hidden nodes, learning time and generalization performance of the model is optimal.

    參考文獻
    相似文獻
    引證文獻
引用本文

宋紹劍,林慶芳,林小峰.純電動(dòng)汽車(chē)磷酸鐵鋰電池組的建模及優(yōu)化計算機測量與控制[J].,2015,23(5):1713-1716.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線(xiàn)發(fā)布日期: 2015-07-31
  • 出版日期:
文章二維碼
上虞市| 汉源县| 兖州市| 晋中市| 乌海市| 东平县| 广安市| 湘西| 株洲市| 尖扎县| 始兴县| 安丘市| 苏州市| 勐海县| 平遥县| 惠州市| 盘山县| 凯里市| 贡觉县| 紫阳县| 乌苏市| 乌恰县| 格尔木市| 永和县| 镶黄旗| 霍州市| 雷山县| 班玛县| 阜平县| 丹棱县| 西平县| 大港区| 牡丹江市| 甘德县| 曲松县| 和田市| 弥勒县| 衡东县| 香格里拉县| 湘阴县| 河东区|