国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于極化因子神經(jīng)網(wǎng)絡(luò )的火電廠(chǎng)制粉系統故障診斷技術(shù)
DOI:
CSTR:
作者:
作者單位:

(1.西安交通大學(xué)城市學(xué)院 計算機科學(xué)與信息管理系,西安 710018  ;2.西安理工大學(xué) 理學(xué)院,西安 710048)

作者簡(jiǎn)介:

江若玫(1979),女,陜西西安人,講師,主要從事信息系統方向的研究。[FQ)]

通訊作者:

中圖分類(lèi)號:

基金項目:

國家高技術(shù)研究發(fā)展計劃(863)項目(2006AA04Z180)。


Neural Network with Polarization Factor for Pulverizing System Fault Diagnosis
Author:
Affiliation:

(1. Department of Computer Science and Information Management, City College, Xi’an Jiaotong University, Xi'an 710018, China; ;2. School of Science, Xi’an University of Technology, Xi'an 710048, China)

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    制粉系統是火電廠(chǎng)的主要設備,其安全穩定運行對發(fā)電企業(yè)的經(jīng)濟生產(chǎn)具有十分重要的意義;針對制粉系統的運行特性和故障分析,提出了基于極化因子神經(jīng)網(wǎng)絡(luò )的火電廠(chǎng)制粉系統故障診斷方法,該方法將故障征兆相應的過(guò)程變量作為輸入,將制粉系統故障類(lèi)型作為輸出,通過(guò)訓練神經(jīng)網(wǎng)絡(luò )建立其系統故障診斷模型,其中訓練過(guò)程中采用極化因子來(lái)自動(dòng)調整神經(jīng)網(wǎng)絡(luò )的收斂速度,從而在滿(mǎn)足誤差目標的前提下,防止其陷入局部極小;選取實(shí)際火電廠(chǎng)制粉系統3個(gè)典型故障及其相對應的9個(gè)故障征兆參數進(jìn)行了實(shí)驗;結果表明,該方法具有良好的收斂性,完全可以滿(mǎn)足火電廠(chǎng)制粉系統現場(chǎng)故障診斷的要求。

    Abstract:

    Pulverizing System is an important part of the power plants and it is crucial to keep the system working safely and stably. According to the operation characteristics and fault analysis knowledge of the system, a fault diagnosis method based on neural network with polarization factor for the pulverizing system of the power plant is proposed. The method builds the diagnosis model by treating a neural network. The neural network uses the process variables that are related to the fault symptoms as the inputs and the fault types as the outputs. Moreover, a polarization factor is used to adjust the convergence speed of neural network automatically. Thus, the method can accomplish the treatment of the neural network and avoid the local minimums. The experiments are performed with three typical faults and their nine corresponding fault symptoms parameters derived from the pulverizing system of a real power plant. The experimental results verify the good convergence of the proposed method. The proposed method can achieve the requirement of on-site fault diagnosis of the pulverizing system of the power plants.

    參考文獻
    相似文獻
    引證文獻
引用本文

江若玫,龔春瓊.基于極化因子神經(jīng)網(wǎng)絡(luò )的火電廠(chǎng)制粉系統故障診斷技術(shù)計算機測量與控制[J].,2015,23(5):1476-1478.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線(xiàn)發(fā)布日期: 2015-07-31
  • 出版日期:
文章二維碼
金华市| 徐闻县| 水城县| 新晃| 东兰县| 凯里市| 阜城县| 平远县| 凭祥市| 鹤山市| 绥德县| 元江| 屏东市| 晋宁县| 鹤壁市| 太湖县| 丹巴县| 滨海县| 海晏县| 鄂尔多斯市| 冀州市| 东山县| 天门市| 沂南县| 德江县| 宜阳县| 大石桥市| 平泉县| 思茅市| 靖宇县| 乌鲁木齐市| 葫芦岛市| 荆州市| 自贡市| 永济市| 宿州市| 普格县| 随州市| 耿马| 东丰县| 清流县|