国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

一種基于分層的人類(lèi)動(dòng)作識別和定位算法研究
DOI:
CSTR:
作者:
作者單位:

太原工業(yè)學(xué)院計算機工程系,.

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

TP393

基金項目:

2013年國家自然科學(xué)基金資助(編號:61373070/F020501)


Research on A Human Action Recognition and Positioning Algorithm Based on Hierarchical
Author:
Affiliation:

Department of Computer Engineering,Taiyuan Institute of Technology,Taiyuan,Shanxi,.

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    人類(lèi)動(dòng)作識別在視頻自動(dòng)分析、視頻檢索等領(lǐng)域獲得廣泛應用,是目前的研究熱點(diǎn)。然而現有的動(dòng)作識別方法重點(diǎn)關(guān)注視頻的非靜態(tài)部分而忽略大部分靜態(tài)部分,從而影響了動(dòng)作識別和定位的效果。本文提出一種新的分層空間-時(shí)間分段表示法,以分層方式實(shí)現部位和整個(gè)身體的多分辨率表示,可用于運動(dòng)識別和定位。該算法分為3個(gè)步驟。第一步,首先對每個(gè)視頻幀進(jìn)行分層分段,以得到一組分段樹(shù),每顆樹(shù)是身體分段樹(shù)的候選。第二步,利用視頻的輪廓、接合對象結構、全局前景色等信息對候選分段樹(shù)進(jìn)行修剪。第三步,在時(shí)域上對剩余分段層的每個(gè)分段進(jìn)行前向和后向跟蹤。我們以難度較大的UCF-Sports和HighFive數據集為實(shí)驗對象,對本文方法進(jìn)行性能評估,實(shí)驗結果表明,本文方法的性能要優(yōu)于當前最新運動(dòng)檢測算法性能,運動(dòng)定位性能與當前最新算法相當。

    Abstract:

    Human action recognition is a hot topic of research, due to its wide ranging application in automatic video analysis, video retrieval and more. However, the existing action recognition methods focus on non-static parts of the video, while the static parts are largely discarded. This is affecting the accuracy of action recognition and location. In this paper, a new hierarchical space-time segments representation designed for both action recognition and localization that incorporates multi-grained representation of the parts and the whole body in a hierarchical way. The proposed algorithm comprises three major steps. We first apply hierarchical segmentation on each video frame to get a set of segment trees, each of which is considered as a candidate segment tree of the human body. In the second step, we prune the candidates by exploring several cues such as shape, articulated objects’ structure and global foreground color. Finally, we track each segment of the remaining segment trees in time both forward and backward. The experimental results show that, the performance of our method is better than the state-of-art action recognition methods on two challenging benchmark datasets UCF-Sports and HighFive, and at the same time produce good action localization results.

    參考文獻
    相似文獻
    引證文獻
引用本文

周曉青,.一種基于分層的人類(lèi)動(dòng)作識別和定位算法研究計算機測量與控制[J].,2014,22(7).

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2014-04-14
  • 最后修改日期:2014-05-25
  • 錄用日期:2014-05-26
  • 在線(xiàn)發(fā)布日期: 2015-01-09
  • 出版日期:
文章二維碼
平度市| 云南省| 巫溪县| 洪雅县| 桓台县| 新乡县| 汝城县| 会东县| 玉田县| 怀柔区| 祁连县| 万源市| 枣阳市| 三穗县| 郁南县| 新郑市| 湖南省| 保定市| 大邑县| 静宁县| 兴宁市| 和田市| 汉寿县| 延津县| 万盛区| 西宁市| 志丹县| 中牟县| 阿瓦提县| 南丰县| 拉萨市| 临武县| 金昌市| 天津市| 藁城市| 黄大仙区| 温泉县| 浦东新区| 宜君县| 望谟县| 涞源县|